Liyan Xiao, Jinyan Pang, Hua Qin, Liyang Dou, Man Yang, Ji Wang, Xianqing Zhou, Yang Li, Junchao Duan, Zhiwei Sun
{"title":"无定形二氧化硅纳米颗粒通过中枢棘蛋白复合体和微丝的功能障碍引起异常胞质分裂和多核化。","authors":"Liyan Xiao, Jinyan Pang, Hua Qin, Liyang Dou, Man Yang, Ji Wang, Xianqing Zhou, Yang Li, Junchao Duan, Zhiwei Sun","doi":"10.1186/s12989-023-00544-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>With the large-scale production and application of amorphous silica nanoparticles (aSiNPs), its adverse health effects are more worthy of our attention. Our previous research has demonstrated for the first time that aSiNPs induced cytokinesis failure, which resulted in abnormally high incidences of multinucleation in vitro, but the underlying mechanisms remain unclear. Therefore, the purpose of this study was firstly to explore whether aSiNPs induced multinucleation in vivo, and secondly to investigate the underlying mechanism of how aSiNPs caused abnormal cytokinesis and multinucleation.</p><p><strong>Methods: </strong>Male ICR mice with intratracheal instillation of aSiNPs were used as an experimental model in vivo. Human hepatic cell line (L-02) was introduced for further mechanism study in vitro.</p><p><strong>Results: </strong>In vivo, histopathological results showed that the rate of multinucleation was significantly increased in the liver and lung tissue after aSiNPs treatment. In vitro, immunofluorescence results manifested that aSiNPs directly caused microfilaments aggregation. Following mechanism studies indicated that aSiNPs increased ROS levels. The accumulation of ROS further inhibited the PI3k 110β/Aurora B pathway, leading to a decrease in the expression of centralspindlin subunits MKLP1 and CYK4 as well as downstream cytokines regulation related proteins Ect2, Cep55, CHMP2A and RhoA. Meanwhile, the particles caused abnormal co-localization of the key mitotic regulatory kinase Aurora B and the centralspindlin complex by inhibiting the PI3k 110β/Aurora B pathway. PI3K activator IGF increased the phosphorylation level of Aurora B and improved the relative ratio of the centralspindlin cluster. And ROS inhibitors NAC reduced the ratio of multinucleation, alleviated the PI3k 110β/Aurora B pathway inhibition, and then increased the expression of MKLP1, CYK4 and cytokinesis-related proteins, whilst NAC restored the clustering of the centralspindlin.</p><p><strong>Conclusion: </strong>This study demonstrated that aSiNPs led to multinucleation formation both in vivo and in vitro. ASiNPs exposure caused microfilaments aggregation and inhibited the PI3k 110β/Aurora B pathway through excessive ROS, which then hindered the centralspindlin cluster as well as restrained the expression of centralspindlin subunits and cytokinesis-related proteins, which ultimately resulted in cytokinesis failure and the formation of multinucleation.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"20 1","pages":"34"},"PeriodicalIF":7.2000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464468/pdf/","citationCount":"0","resultStr":"{\"title\":\"Amorphous silica nanoparticles cause abnormal cytokinesis and multinucleation through dysfunction of the centralspindlin complex and microfilaments.\",\"authors\":\"Liyan Xiao, Jinyan Pang, Hua Qin, Liyang Dou, Man Yang, Ji Wang, Xianqing Zhou, Yang Li, Junchao Duan, Zhiwei Sun\",\"doi\":\"10.1186/s12989-023-00544-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>With the large-scale production and application of amorphous silica nanoparticles (aSiNPs), its adverse health effects are more worthy of our attention. Our previous research has demonstrated for the first time that aSiNPs induced cytokinesis failure, which resulted in abnormally high incidences of multinucleation in vitro, but the underlying mechanisms remain unclear. Therefore, the purpose of this study was firstly to explore whether aSiNPs induced multinucleation in vivo, and secondly to investigate the underlying mechanism of how aSiNPs caused abnormal cytokinesis and multinucleation.</p><p><strong>Methods: </strong>Male ICR mice with intratracheal instillation of aSiNPs were used as an experimental model in vivo. Human hepatic cell line (L-02) was introduced for further mechanism study in vitro.</p><p><strong>Results: </strong>In vivo, histopathological results showed that the rate of multinucleation was significantly increased in the liver and lung tissue after aSiNPs treatment. In vitro, immunofluorescence results manifested that aSiNPs directly caused microfilaments aggregation. Following mechanism studies indicated that aSiNPs increased ROS levels. The accumulation of ROS further inhibited the PI3k 110β/Aurora B pathway, leading to a decrease in the expression of centralspindlin subunits MKLP1 and CYK4 as well as downstream cytokines regulation related proteins Ect2, Cep55, CHMP2A and RhoA. Meanwhile, the particles caused abnormal co-localization of the key mitotic regulatory kinase Aurora B and the centralspindlin complex by inhibiting the PI3k 110β/Aurora B pathway. PI3K activator IGF increased the phosphorylation level of Aurora B and improved the relative ratio of the centralspindlin cluster. And ROS inhibitors NAC reduced the ratio of multinucleation, alleviated the PI3k 110β/Aurora B pathway inhibition, and then increased the expression of MKLP1, CYK4 and cytokinesis-related proteins, whilst NAC restored the clustering of the centralspindlin.</p><p><strong>Conclusion: </strong>This study demonstrated that aSiNPs led to multinucleation formation both in vivo and in vitro. ASiNPs exposure caused microfilaments aggregation and inhibited the PI3k 110β/Aurora B pathway through excessive ROS, which then hindered the centralspindlin cluster as well as restrained the expression of centralspindlin subunits and cytokinesis-related proteins, which ultimately resulted in cytokinesis failure and the formation of multinucleation.</p>\",\"PeriodicalId\":19847,\"journal\":{\"name\":\"Particle and Fibre Toxicology\",\"volume\":\"20 1\",\"pages\":\"34\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464468/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle and Fibre Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12989-023-00544-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle and Fibre Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12989-023-00544-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Amorphous silica nanoparticles cause abnormal cytokinesis and multinucleation through dysfunction of the centralspindlin complex and microfilaments.
Background: With the large-scale production and application of amorphous silica nanoparticles (aSiNPs), its adverse health effects are more worthy of our attention. Our previous research has demonstrated for the first time that aSiNPs induced cytokinesis failure, which resulted in abnormally high incidences of multinucleation in vitro, but the underlying mechanisms remain unclear. Therefore, the purpose of this study was firstly to explore whether aSiNPs induced multinucleation in vivo, and secondly to investigate the underlying mechanism of how aSiNPs caused abnormal cytokinesis and multinucleation.
Methods: Male ICR mice with intratracheal instillation of aSiNPs were used as an experimental model in vivo. Human hepatic cell line (L-02) was introduced for further mechanism study in vitro.
Results: In vivo, histopathological results showed that the rate of multinucleation was significantly increased in the liver and lung tissue after aSiNPs treatment. In vitro, immunofluorescence results manifested that aSiNPs directly caused microfilaments aggregation. Following mechanism studies indicated that aSiNPs increased ROS levels. The accumulation of ROS further inhibited the PI3k 110β/Aurora B pathway, leading to a decrease in the expression of centralspindlin subunits MKLP1 and CYK4 as well as downstream cytokines regulation related proteins Ect2, Cep55, CHMP2A and RhoA. Meanwhile, the particles caused abnormal co-localization of the key mitotic regulatory kinase Aurora B and the centralspindlin complex by inhibiting the PI3k 110β/Aurora B pathway. PI3K activator IGF increased the phosphorylation level of Aurora B and improved the relative ratio of the centralspindlin cluster. And ROS inhibitors NAC reduced the ratio of multinucleation, alleviated the PI3k 110β/Aurora B pathway inhibition, and then increased the expression of MKLP1, CYK4 and cytokinesis-related proteins, whilst NAC restored the clustering of the centralspindlin.
Conclusion: This study demonstrated that aSiNPs led to multinucleation formation both in vivo and in vitro. ASiNPs exposure caused microfilaments aggregation and inhibited the PI3k 110β/Aurora B pathway through excessive ROS, which then hindered the centralspindlin cluster as well as restrained the expression of centralspindlin subunits and cytokinesis-related proteins, which ultimately resulted in cytokinesis failure and the formation of multinucleation.
期刊介绍:
Particle and Fibre Toxicology is an online journal that is open access and peer-reviewed. It covers a range of disciplines such as material science, biomaterials, and nanomedicine, focusing on the toxicological effects of particles and fibres. The journal serves as a platform for scientific debate and communication among toxicologists and scientists from different fields who work with particle and fibre materials. The main objective of the journal is to deepen our understanding of the physico-chemical properties of particles, their potential for human exposure, and the resulting biological effects. It also addresses regulatory issues related to particle exposure in workplaces and the general environment. Moreover, the journal recognizes that there are various situations where particles can pose a toxicological threat, such as the use of old materials in new applications or the introduction of new materials altogether. By encompassing all these disciplines, Particle and Fibre Toxicology provides a comprehensive source for research in this field.