Yamato Sano, Satoshi Shoji, Mohamed Shahin, Kevin Sweeney, Amanda Darekar, Bimal K Malhotra
{"title":"非索罗定在小儿神经源性逼尿肌过度活跃患者中的群体药代动力学和药效学模型。","authors":"Yamato Sano, Satoshi Shoji, Mohamed Shahin, Kevin Sweeney, Amanda Darekar, Bimal K Malhotra","doi":"10.1007/s13318-023-00818-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Fesoterodine is a muscarinic receptor antagonist approved for the treatment of overactive bladder (OAB) in adults and neurogenic detrusor overactivity (NDO) in pediatric patients. This work aimed to characterize the population pharmacokinetics of 5-hydroxymethyl tolterodine (5-HMT, the active metabolite of fesoterodine) and its pharmacokinetic/pharmacodynamic relationship in pediatric patients with OAB or NDO following administration of fesoterodine.</p><p><strong>Methods: </strong>5-HMT plasma concentrations from 142 participants of age ≥ 6 years were analyzed, and a nonlinear mixed-effects model was developed. Weight-based simulations of 5-HMT exposure and maximum cystometric capacity (MCC) were conducted using the final models.</p><p><strong>Results: </strong>A one-compartment model with first-order absorption and a lag time, which included the effects of body weight, sex, cytochrome (CYP) 2D6 metabolizer status and fesoterodine formulation on pharmacokinetic parameters, best described the 5-HMT pharmacokinetics. An E<sub>max</sub> model described the exposure-response relationship adequately. The median maximum concentration at steady state for pediatric patients weighing 25-35 kg and receiving 8 mg once daily (QD) was estimated to be 2.45 times greater than that in adults receiving 8 mg QD. Furthermore, simulation results showed dosing with fesoterodine 4 mg QD to pediatric patients weighing 25-35 kg and 8 mg QD to pediatric patients weighing >35 kg would achieve adequate exposure to demonstrate a clinically meaningful change from baseline (CFB) MCC.</p><p><strong>Conclusions: </strong>Population models were developed for 5-HMT and MCC in pediatric patients. Weight-based simulations indicated that 4 mg QD for pediatric patients weighing 25-35 kg and 8 mg QD for those weighing > 35 kg provided similar exposures to those in adults following 8 mg QD and a clinically meaningful CFB MCC.</p><p><strong>Clinical trial numbers: </strong>NCT00857896, NCT01557244.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/35/20/13318_2023_Article_818.PMC10175358.pdf","citationCount":"0","resultStr":"{\"title\":\"Population Pharmacokinetic and Pharmacodynamic Modeling of Fesoterodine in Pediatric Patients with Neurogenic Detrusor Overactivity.\",\"authors\":\"Yamato Sano, Satoshi Shoji, Mohamed Shahin, Kevin Sweeney, Amanda Darekar, Bimal K Malhotra\",\"doi\":\"10.1007/s13318-023-00818-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>Fesoterodine is a muscarinic receptor antagonist approved for the treatment of overactive bladder (OAB) in adults and neurogenic detrusor overactivity (NDO) in pediatric patients. This work aimed to characterize the population pharmacokinetics of 5-hydroxymethyl tolterodine (5-HMT, the active metabolite of fesoterodine) and its pharmacokinetic/pharmacodynamic relationship in pediatric patients with OAB or NDO following administration of fesoterodine.</p><p><strong>Methods: </strong>5-HMT plasma concentrations from 142 participants of age ≥ 6 years were analyzed, and a nonlinear mixed-effects model was developed. Weight-based simulations of 5-HMT exposure and maximum cystometric capacity (MCC) were conducted using the final models.</p><p><strong>Results: </strong>A one-compartment model with first-order absorption and a lag time, which included the effects of body weight, sex, cytochrome (CYP) 2D6 metabolizer status and fesoterodine formulation on pharmacokinetic parameters, best described the 5-HMT pharmacokinetics. An E<sub>max</sub> model described the exposure-response relationship adequately. The median maximum concentration at steady state for pediatric patients weighing 25-35 kg and receiving 8 mg once daily (QD) was estimated to be 2.45 times greater than that in adults receiving 8 mg QD. Furthermore, simulation results showed dosing with fesoterodine 4 mg QD to pediatric patients weighing 25-35 kg and 8 mg QD to pediatric patients weighing >35 kg would achieve adequate exposure to demonstrate a clinically meaningful change from baseline (CFB) MCC.</p><p><strong>Conclusions: </strong>Population models were developed for 5-HMT and MCC in pediatric patients. Weight-based simulations indicated that 4 mg QD for pediatric patients weighing 25-35 kg and 8 mg QD for those weighing > 35 kg provided similar exposures to those in adults following 8 mg QD and a clinically meaningful CFB MCC.</p><p><strong>Clinical trial numbers: </strong>NCT00857896, NCT01557244.</p>\",\"PeriodicalId\":11939,\"journal\":{\"name\":\"European Journal of Drug Metabolism and Pharmacokinetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/35/20/13318_2023_Article_818.PMC10175358.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Drug Metabolism and Pharmacokinetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13318-023-00818-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13318-023-00818-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Population Pharmacokinetic and Pharmacodynamic Modeling of Fesoterodine in Pediatric Patients with Neurogenic Detrusor Overactivity.
Background and objective: Fesoterodine is a muscarinic receptor antagonist approved for the treatment of overactive bladder (OAB) in adults and neurogenic detrusor overactivity (NDO) in pediatric patients. This work aimed to characterize the population pharmacokinetics of 5-hydroxymethyl tolterodine (5-HMT, the active metabolite of fesoterodine) and its pharmacokinetic/pharmacodynamic relationship in pediatric patients with OAB or NDO following administration of fesoterodine.
Methods: 5-HMT plasma concentrations from 142 participants of age ≥ 6 years were analyzed, and a nonlinear mixed-effects model was developed. Weight-based simulations of 5-HMT exposure and maximum cystometric capacity (MCC) were conducted using the final models.
Results: A one-compartment model with first-order absorption and a lag time, which included the effects of body weight, sex, cytochrome (CYP) 2D6 metabolizer status and fesoterodine formulation on pharmacokinetic parameters, best described the 5-HMT pharmacokinetics. An Emax model described the exposure-response relationship adequately. The median maximum concentration at steady state for pediatric patients weighing 25-35 kg and receiving 8 mg once daily (QD) was estimated to be 2.45 times greater than that in adults receiving 8 mg QD. Furthermore, simulation results showed dosing with fesoterodine 4 mg QD to pediatric patients weighing 25-35 kg and 8 mg QD to pediatric patients weighing >35 kg would achieve adequate exposure to demonstrate a clinically meaningful change from baseline (CFB) MCC.
Conclusions: Population models were developed for 5-HMT and MCC in pediatric patients. Weight-based simulations indicated that 4 mg QD for pediatric patients weighing 25-35 kg and 8 mg QD for those weighing > 35 kg provided similar exposures to those in adults following 8 mg QD and a clinically meaningful CFB MCC.
期刊介绍:
Hepatology International is a peer-reviewed journal featuring articles written by clinicians, clinical researchers and basic scientists is dedicated to research and patient care issues in hepatology. This journal focuses mainly on new and emerging diagnostic and treatment options, protocols and molecular and cellular basis of disease pathogenesis, new technologies, in liver and biliary sciences.
Hepatology International publishes original research articles related to clinical care and basic research; review articles; consensus guidelines for diagnosis and treatment; invited editorials, and controversies in contemporary issues. The journal does not publish case reports.