Joycelyne Ewusie, Joseph Beyene, Lehana Thabane, Sharon E Straus, Jemila S Hamid
{"title":"一种改进的中断时间序列(ITS)数据分析方法:使用加权分析考虑患者异质性。","authors":"Joycelyne Ewusie, Joseph Beyene, Lehana Thabane, Sharon E Straus, Jemila S Hamid","doi":"10.1515/ijb-2020-0046","DOIUrl":null,"url":null,"abstract":"Abstract Interrupted time series (ITS) design is commonly used to evaluate the impact of interventions in healthcare settings. Segmented regression (SR) is the most commonly used statistical method and has been shown to be useful in practical applications involving ITS designs. Nevertheless, SR is prone to aggregation bias, which leads to imprecision and loss of power to detect clinically meaningful differences. The objective of this article is to present a weighted SR method, where variability across patients within the healthcare facility and across time points is incorporated through weights. We present the methodological framework, provide optimal weights associated with data at each time point and discuss relevant statistical inference. We conduct extensive simulations to evaluate performance of our method and provide comparative analysis with the traditional SR using established performance criteria such as bias, mean square error and statistical power. Illustrations using real data is also provided. In most simulation scenarios considered, the weighted SR method produced estimators that are uniformly more precise and relatively less biased compared to the traditional SR. The weighted approach also associated with higher statistical power in the scenarios considered. The performance difference is much larger for data with high variability across patients within healthcare facilities. The weighted method proposed here allows us to account for the heterogeneity in the patient population, leading to increased accuracy and power across all scenarios. We recommend researchers to carefully design their studies and determine their sample size by incorporating heterogeneity in the patient population.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An improved method for analysis of interrupted time series (ITS) data: accounting for patient heterogeneity using weighted analysis.\",\"authors\":\"Joycelyne Ewusie, Joseph Beyene, Lehana Thabane, Sharon E Straus, Jemila S Hamid\",\"doi\":\"10.1515/ijb-2020-0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Interrupted time series (ITS) design is commonly used to evaluate the impact of interventions in healthcare settings. Segmented regression (SR) is the most commonly used statistical method and has been shown to be useful in practical applications involving ITS designs. Nevertheless, SR is prone to aggregation bias, which leads to imprecision and loss of power to detect clinically meaningful differences. The objective of this article is to present a weighted SR method, where variability across patients within the healthcare facility and across time points is incorporated through weights. We present the methodological framework, provide optimal weights associated with data at each time point and discuss relevant statistical inference. We conduct extensive simulations to evaluate performance of our method and provide comparative analysis with the traditional SR using established performance criteria such as bias, mean square error and statistical power. Illustrations using real data is also provided. In most simulation scenarios considered, the weighted SR method produced estimators that are uniformly more precise and relatively less biased compared to the traditional SR. The weighted approach also associated with higher statistical power in the scenarios considered. The performance difference is much larger for data with high variability across patients within healthcare facilities. The weighted method proposed here allows us to account for the heterogeneity in the patient population, leading to increased accuracy and power across all scenarios. We recommend researchers to carefully design their studies and determine their sample size by incorporating heterogeneity in the patient population.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2020-0046\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2020-0046","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An improved method for analysis of interrupted time series (ITS) data: accounting for patient heterogeneity using weighted analysis.
Abstract Interrupted time series (ITS) design is commonly used to evaluate the impact of interventions in healthcare settings. Segmented regression (SR) is the most commonly used statistical method and has been shown to be useful in practical applications involving ITS designs. Nevertheless, SR is prone to aggregation bias, which leads to imprecision and loss of power to detect clinically meaningful differences. The objective of this article is to present a weighted SR method, where variability across patients within the healthcare facility and across time points is incorporated through weights. We present the methodological framework, provide optimal weights associated with data at each time point and discuss relevant statistical inference. We conduct extensive simulations to evaluate performance of our method and provide comparative analysis with the traditional SR using established performance criteria such as bias, mean square error and statistical power. Illustrations using real data is also provided. In most simulation scenarios considered, the weighted SR method produced estimators that are uniformly more precise and relatively less biased compared to the traditional SR. The weighted approach also associated with higher statistical power in the scenarios considered. The performance difference is much larger for data with high variability across patients within healthcare facilities. The weighted method proposed here allows us to account for the heterogeneity in the patient population, leading to increased accuracy and power across all scenarios. We recommend researchers to carefully design their studies and determine their sample size by incorporating heterogeneity in the patient population.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.