Anna-Laura Hasubek, Xiaoyu Wang, Ella Zhang, Marta Kobus, Jiashang Chen, Lindsey A. Vandergrift, Annika Kurreck, Felix Ehret, Sarah Dinges, Annika Hohm, Marlon Tilgner, Alexander Buko, Piet Habbel, Johannes Nowak, Nathaniel D. Mercaldo, Andrew Gusev, Adam S. Feldman, Leo L. Cheng
{"title":"尿1h NMR代谢组学鉴别前列腺癌患者与非前列腺癌患者。","authors":"Anna-Laura Hasubek, Xiaoyu Wang, Ella Zhang, Marta Kobus, Jiashang Chen, Lindsey A. Vandergrift, Annika Kurreck, Felix Ehret, Sarah Dinges, Annika Hohm, Marlon Tilgner, Alexander Buko, Piet Habbel, Johannes Nowak, Nathaniel D. Mercaldo, Andrew Gusev, Adam S. Feldman, Leo L. Cheng","doi":"10.1002/mrc.5391","DOIUrl":null,"url":null,"abstract":"<p>Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide. For its detection, serum prostate-specific antigen (PSA) screening is commonly used, despite its lack of specificity, high false positive rate, and inability to discriminate indolent from aggressive PCa. Following increases in serum PSA levels, clinicians often conduct prostate biopsies with or without advanced imaging. Nuclear magnetic resonance (NMR)-based metabolomics has proven to be promising for advancing early-detection and elucidation of disease progression, through the discovery and characterization of novel biomarkers. This retrospective study of urine-NMR samples, from prostate biopsy patients with and without PCa, identified several metabolites involved in energy metabolism, amino acid metabolism, and the hippuric acid pathway. Of note, lactate and hippurate—key metabolites involved in cellular proliferation and microbiome effects, respectively—were significantly altered, unveiling widespread metabolomic modifications associated with PCa development. These findings support urine metabolomics profiling as a promising strategy to identify new clinical biomarkers for PCa detection and diagnosis.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiation of patients with and without prostate cancer using urine 1H NMR metabolomics\",\"authors\":\"Anna-Laura Hasubek, Xiaoyu Wang, Ella Zhang, Marta Kobus, Jiashang Chen, Lindsey A. Vandergrift, Annika Kurreck, Felix Ehret, Sarah Dinges, Annika Hohm, Marlon Tilgner, Alexander Buko, Piet Habbel, Johannes Nowak, Nathaniel D. Mercaldo, Andrew Gusev, Adam S. Feldman, Leo L. Cheng\",\"doi\":\"10.1002/mrc.5391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide. For its detection, serum prostate-specific antigen (PSA) screening is commonly used, despite its lack of specificity, high false positive rate, and inability to discriminate indolent from aggressive PCa. Following increases in serum PSA levels, clinicians often conduct prostate biopsies with or without advanced imaging. Nuclear magnetic resonance (NMR)-based metabolomics has proven to be promising for advancing early-detection and elucidation of disease progression, through the discovery and characterization of novel biomarkers. This retrospective study of urine-NMR samples, from prostate biopsy patients with and without PCa, identified several metabolites involved in energy metabolism, amino acid metabolism, and the hippuric acid pathway. Of note, lactate and hippurate—key metabolites involved in cellular proliferation and microbiome effects, respectively—were significantly altered, unveiling widespread metabolomic modifications associated with PCa development. These findings support urine metabolomics profiling as a promising strategy to identify new clinical biomarkers for PCa detection and diagnosis.</p>\",\"PeriodicalId\":18142,\"journal\":{\"name\":\"Magnetic Resonance in Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5391\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5391","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Differentiation of patients with and without prostate cancer using urine 1H NMR metabolomics
Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide. For its detection, serum prostate-specific antigen (PSA) screening is commonly used, despite its lack of specificity, high false positive rate, and inability to discriminate indolent from aggressive PCa. Following increases in serum PSA levels, clinicians often conduct prostate biopsies with or without advanced imaging. Nuclear magnetic resonance (NMR)-based metabolomics has proven to be promising for advancing early-detection and elucidation of disease progression, through the discovery and characterization of novel biomarkers. This retrospective study of urine-NMR samples, from prostate biopsy patients with and without PCa, identified several metabolites involved in energy metabolism, amino acid metabolism, and the hippuric acid pathway. Of note, lactate and hippurate—key metabolites involved in cellular proliferation and microbiome effects, respectively—were significantly altered, unveiling widespread metabolomic modifications associated with PCa development. These findings support urine metabolomics profiling as a promising strategy to identify new clinical biomarkers for PCa detection and diagnosis.
期刊介绍:
MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published.
The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.