ELM训练神经网络用于金融建模的实证验证。

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computing & Applications Pub Date : 2023-01-01 DOI:10.1007/s00521-022-07792-3
Volodymyr Novykov, Christopher Bilson, Adrian Gepp, Geoff Harris, Bruce James Vanstone
{"title":"ELM训练神经网络用于金融建模的实证验证。","authors":"Volodymyr Novykov,&nbsp;Christopher Bilson,&nbsp;Adrian Gepp,&nbsp;Geoff Harris,&nbsp;Bruce James Vanstone","doi":"10.1007/s00521-022-07792-3","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this work is to compare predictive performance of neural networks trained using the relatively novel technique of training single hidden layer feedforward neural networks (SFNN), called Extreme Learning Machine (ELM), with commonly used backpropagation-trained recurrent neural networks (RNN) as applied to the task of financial market prediction. Evaluated on a set of large capitalisation stocks on the Australian market, specifically the components of the ASX20, ELM-trained SFNNs showed superior performance over RNNs for individual stock price prediction. While this conclusion of efficacy holds generally, long short-term memory (LSTM) RNNs were found to outperform for a small subset of stocks. Subsequent analysis identified several areas of performance deviations which we highlight as potentially fruitful areas for further research and performance improvement.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 2","pages":"1581-1605"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525949/pdf/","citationCount":"1","resultStr":"{\"title\":\"Empirical validation of ELM trained neural networks for financial modelling.\",\"authors\":\"Volodymyr Novykov,&nbsp;Christopher Bilson,&nbsp;Adrian Gepp,&nbsp;Geoff Harris,&nbsp;Bruce James Vanstone\",\"doi\":\"10.1007/s00521-022-07792-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this work is to compare predictive performance of neural networks trained using the relatively novel technique of training single hidden layer feedforward neural networks (SFNN), called Extreme Learning Machine (ELM), with commonly used backpropagation-trained recurrent neural networks (RNN) as applied to the task of financial market prediction. Evaluated on a set of large capitalisation stocks on the Australian market, specifically the components of the ASX20, ELM-trained SFNNs showed superior performance over RNNs for individual stock price prediction. While this conclusion of efficacy holds generally, long short-term memory (LSTM) RNNs were found to outperform for a small subset of stocks. Subsequent analysis identified several areas of performance deviations which we highlight as potentially fruitful areas for further research and performance improvement.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":\"35 2\",\"pages\":\"1581-1605\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525949/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-022-07792-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-07792-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

这项工作的目的是比较使用相对新颖的训练单隐层前馈神经网络(SFNN)的神经网络的预测性能,称为极限学习机(ELM),与常用的反向传播训练的递归神经网络(RNN)应用于金融市场预测任务。在澳大利亚市场的一组大市值股票上进行评估,特别是ASX20的组成部分,elm训练的sfnn在单个股票价格预测方面表现优于rnn。虽然这一功效结论普遍成立,但研究发现,长短期记忆(LSTM) rnn在一小部分股票中表现优于其他股票。随后的分析确定了几个性能偏差的领域,我们强调这些领域可能是进一步研究和性能改进的富有成效的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Empirical validation of ELM trained neural networks for financial modelling.

The purpose of this work is to compare predictive performance of neural networks trained using the relatively novel technique of training single hidden layer feedforward neural networks (SFNN), called Extreme Learning Machine (ELM), with commonly used backpropagation-trained recurrent neural networks (RNN) as applied to the task of financial market prediction. Evaluated on a set of large capitalisation stocks on the Australian market, specifically the components of the ASX20, ELM-trained SFNNs showed superior performance over RNNs for individual stock price prediction. While this conclusion of efficacy holds generally, long short-term memory (LSTM) RNNs were found to outperform for a small subset of stocks. Subsequent analysis identified several areas of performance deviations which we highlight as potentially fruitful areas for further research and performance improvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
期刊最新文献
Stress monitoring using wearable sensors: IoT techniques in medical field. A new hybrid model of convolutional neural networks and hidden Markov chains for image classification. Analysing sentiment change detection of Covid-19 tweets. Normal vibration distribution search-based differential evolution algorithm for multimodal biomedical image registration. Special issue on deep learning and big data analytics for medical e-diagnosis/AI-based e-diagnosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1