{"title":"基因型值分解:核统计量计算的简单方法","authors":"Kazuharu Misawa","doi":"10.1002/ggn2.202100066","DOIUrl":null,"url":null,"abstract":"<p>Recent advances in sequencing technologies enable genome-wide analyses for thousands of individuals. The sequential kernel association test (SKAT) is a widely used method to test for associations between a phenotype and a set of rare variants. As the sample size of human genetics studies increases, the computational time required to calculate a kernel is becoming more and more problematic. In this study, a new method to obtain kernel statistics without calculating a kernel matrix is proposed. A simple method for the computation of two kernel statistics, namely, a kernel statistic based on a genetic relationship matrix (GRM) and one based on an identity by state (IBS) matrix, are proposed. By using this method, calculation of the kernel statistics can be conducted using vector calculation without matrix calculation. The proposed method enables one to conduct SKAT for large samples of human genetics.</p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744480/pdf/","citationCount":"1","resultStr":"{\"title\":\"Genotype Value Decomposition: Simple Methods for the Computation of Kernel Statistics\",\"authors\":\"Kazuharu Misawa\",\"doi\":\"10.1002/ggn2.202100066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advances in sequencing technologies enable genome-wide analyses for thousands of individuals. The sequential kernel association test (SKAT) is a widely used method to test for associations between a phenotype and a set of rare variants. As the sample size of human genetics studies increases, the computational time required to calculate a kernel is becoming more and more problematic. In this study, a new method to obtain kernel statistics without calculating a kernel matrix is proposed. A simple method for the computation of two kernel statistics, namely, a kernel statistic based on a genetic relationship matrix (GRM) and one based on an identity by state (IBS) matrix, are proposed. By using this method, calculation of the kernel statistics can be conducted using vector calculation without matrix calculation. The proposed method enables one to conduct SKAT for large samples of human genetics.</p>\",\"PeriodicalId\":72071,\"journal\":{\"name\":\"Advanced genetics (Hoboken, N.J.)\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744480/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced genetics (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ggn2.202100066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced genetics (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ggn2.202100066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genotype Value Decomposition: Simple Methods for the Computation of Kernel Statistics
Recent advances in sequencing technologies enable genome-wide analyses for thousands of individuals. The sequential kernel association test (SKAT) is a widely used method to test for associations between a phenotype and a set of rare variants. As the sample size of human genetics studies increases, the computational time required to calculate a kernel is becoming more and more problematic. In this study, a new method to obtain kernel statistics without calculating a kernel matrix is proposed. A simple method for the computation of two kernel statistics, namely, a kernel statistic based on a genetic relationship matrix (GRM) and one based on an identity by state (IBS) matrix, are proposed. By using this method, calculation of the kernel statistics can be conducted using vector calculation without matrix calculation. The proposed method enables one to conduct SKAT for large samples of human genetics.