来自大肠杆菌的III型preQ1-I核糖开关的结构和功能分析揭示了Shine-Dalgarno序列对代谢物的直接传感。

The Journal of Biological Chemistry Pub Date : 2023-10-01 Epub Date: 2023-09-01 DOI:10.1016/j.jbc.2023.105208
Griffin M Schroeder, Daniil Kiliushik, Jermaine L Jenkins, Joseph E Wedekind
{"title":"来自大肠杆菌的III型preQ1-I核糖开关的结构和功能分析揭示了Shine-Dalgarno序列对代谢物的直接传感。","authors":"Griffin M Schroeder, Daniil Kiliushik, Jermaine L Jenkins, Joseph E Wedekind","doi":"10.1016/j.jbc.2023.105208","DOIUrl":null,"url":null,"abstract":"<p><p>Riboswitches are small noncoding RNAs found primarily in the 5' leader regions of bacterial messenger RNAs where they regulate expression of downstream genes in response to binding one or more cellular metabolites. Such noncoding RNAs are often regulated at the translation level, which is thought to be mediated by the accessibility of the Shine-Dalgarno sequence (SDS) ribosome-binding site. Three classes (I-III) of prequeuosine<sub>1</sub> (preQ<sub>1</sub>)-sensing riboswitches are known that control translation. Class I is divided into three subtypes (types I-III) that have diverse mechanisms of sensing preQ<sub>1</sub>, which is involved in queuosine biosynthesis. To provide insight into translation control, we determined a 2.30 Å-resolution cocrystal structure of a class I type III preQ<sub>1</sub>-sensing riboswitch identified in Escherichia coli (Eco) by bioinformatic searches. The Eco riboswitch structure differs from previous preQ<sub>1</sub> riboswitch structures because it has the smallest naturally occurring aptamer and the SDS directly contacts the preQ<sub>1</sub> metabolite. We validated structural observations using surface plasmon resonance and in vivo gene-expression assays, which showed strong switching in live E. coli. Our results demonstrate that the Eco riboswitch is relatively sensitive to mutations that disrupt noncanonical interactions that form the pseudoknot. In contrast to type II preQ<sub>1</sub> riboswitches, a kinetic analysis showed that the type III Eco riboswitch strongly prefers preQ<sub>1</sub> over the chemically similar metabolic precursor preQ<sub>0</sub>. Our results reveal the importance of noncanonical interactions in riboswitch-driven gene regulation and the versatility of the class I preQ<sub>1</sub> riboswitch pseudoknot as a metabolite-sensing platform that supports SDS sequestration.</p>","PeriodicalId":22621,"journal":{"name":"The Journal of Biological Chemistry","volume":" ","pages":"105208"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622847/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structure and function analysis of a type III preQ<sub>1</sub>-I riboswitch from Escherichia coli reveals direct metabolite sensing by the Shine-Dalgarno sequence.\",\"authors\":\"Griffin M Schroeder, Daniil Kiliushik, Jermaine L Jenkins, Joseph E Wedekind\",\"doi\":\"10.1016/j.jbc.2023.105208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Riboswitches are small noncoding RNAs found primarily in the 5' leader regions of bacterial messenger RNAs where they regulate expression of downstream genes in response to binding one or more cellular metabolites. Such noncoding RNAs are often regulated at the translation level, which is thought to be mediated by the accessibility of the Shine-Dalgarno sequence (SDS) ribosome-binding site. Three classes (I-III) of prequeuosine<sub>1</sub> (preQ<sub>1</sub>)-sensing riboswitches are known that control translation. Class I is divided into three subtypes (types I-III) that have diverse mechanisms of sensing preQ<sub>1</sub>, which is involved in queuosine biosynthesis. To provide insight into translation control, we determined a 2.30 Å-resolution cocrystal structure of a class I type III preQ<sub>1</sub>-sensing riboswitch identified in Escherichia coli (Eco) by bioinformatic searches. The Eco riboswitch structure differs from previous preQ<sub>1</sub> riboswitch structures because it has the smallest naturally occurring aptamer and the SDS directly contacts the preQ<sub>1</sub> metabolite. We validated structural observations using surface plasmon resonance and in vivo gene-expression assays, which showed strong switching in live E. coli. Our results demonstrate that the Eco riboswitch is relatively sensitive to mutations that disrupt noncanonical interactions that form the pseudoknot. In contrast to type II preQ<sub>1</sub> riboswitches, a kinetic analysis showed that the type III Eco riboswitch strongly prefers preQ<sub>1</sub> over the chemically similar metabolic precursor preQ<sub>0</sub>. Our results reveal the importance of noncanonical interactions in riboswitch-driven gene regulation and the versatility of the class I preQ<sub>1</sub> riboswitch pseudoknot as a metabolite-sensing platform that supports SDS sequestration.</p>\",\"PeriodicalId\":22621,\"journal\":{\"name\":\"The Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"105208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Biological Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2023.105208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Biological Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jbc.2023.105208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

核糖开关是一种小的非编码RNA,主要存在于细菌信使RNA的5’前导区,在那里它们调节下游基因的表达,以响应与一种或多种细胞代谢产物的结合。这种非编码RNA通常在翻译水平上受到调节,这被认为是由Shine-Dalgarno序列(SDS)核糖体结合位点的可及性介导的。已知控制翻译的三类(I-III)前queuosine1(preQ1)感应核糖开关。I类分为三种亚型(I-III型),它们具有不同的感知preQ1的机制,preQ1参与queuosine的生物合成。为了深入了解翻译控制,我们通过生物信息学搜索确定了在大肠杆菌(Eco)中鉴定的I类III型preQ1传感核糖开关的2.30Å分辨率共晶结构。Eco核糖开关结构不同于以前的preQ1核糖开关结构,因为它具有最小的天然存在的适体,并且SDS直接接触preQ1代谢产物。我们使用表面等离子体共振和体内基因表达分析验证了结构观察结果,这些结果显示活大肠杆菌中存在强烈的转换。我们的结果表明,Eco核糖开关对破坏形成假结的非经典相互作用的突变相对敏感。与II型preQ1核糖开关相比,动力学分析表明,III型Eco核糖开关强烈偏好preQ1,而不是化学相似的代谢前体preQ0。我们的研究结果揭示了非经典相互作用在核糖开关驱动的基因调控中的重要性,以及I类preQ1核糖开关假结作为支持SDS螯合的代谢物传感平台的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structure and function analysis of a type III preQ1-I riboswitch from Escherichia coli reveals direct metabolite sensing by the Shine-Dalgarno sequence.

Riboswitches are small noncoding RNAs found primarily in the 5' leader regions of bacterial messenger RNAs where they regulate expression of downstream genes in response to binding one or more cellular metabolites. Such noncoding RNAs are often regulated at the translation level, which is thought to be mediated by the accessibility of the Shine-Dalgarno sequence (SDS) ribosome-binding site. Three classes (I-III) of prequeuosine1 (preQ1)-sensing riboswitches are known that control translation. Class I is divided into three subtypes (types I-III) that have diverse mechanisms of sensing preQ1, which is involved in queuosine biosynthesis. To provide insight into translation control, we determined a 2.30 Å-resolution cocrystal structure of a class I type III preQ1-sensing riboswitch identified in Escherichia coli (Eco) by bioinformatic searches. The Eco riboswitch structure differs from previous preQ1 riboswitch structures because it has the smallest naturally occurring aptamer and the SDS directly contacts the preQ1 metabolite. We validated structural observations using surface plasmon resonance and in vivo gene-expression assays, which showed strong switching in live E. coli. Our results demonstrate that the Eco riboswitch is relatively sensitive to mutations that disrupt noncanonical interactions that form the pseudoknot. In contrast to type II preQ1 riboswitches, a kinetic analysis showed that the type III Eco riboswitch strongly prefers preQ1 over the chemically similar metabolic precursor preQ0. Our results reveal the importance of noncanonical interactions in riboswitch-driven gene regulation and the versatility of the class I preQ1 riboswitch pseudoknot as a metabolite-sensing platform that supports SDS sequestration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The molecular principles underlying diverse functions of the SLC26 family of proteins. JNK activity modulates postsynaptic scaffold protein SAP102 and kainate receptor dynamics in dendritic spines. Structural characterization of methylation-independent PP2A assembly guides Alphafold2Multimer prediction of family-wide PP2A complexes. Applications of protein ubiquitylation and deubiquitylation in drug discovery. Rapid HPLC method reveals dynamic shifts in coenzyme Q redox state.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1