Françoise Kraeber-Bodéré, Bastien Jamet, Davide Bezzi, Elena Zamagni, Philippe Moreau, Cristina Nanni
{"title":"骨髓瘤治疗和疗效评估的新进展。","authors":"Françoise Kraeber-Bodéré, Bastien Jamet, Davide Bezzi, Elena Zamagni, Philippe Moreau, Cristina Nanni","doi":"10.2967/jnumed.122.264972","DOIUrl":null,"url":null,"abstract":"<p><p>Recent innovative strategies have dramatically redefined the therapeutic landscape for treating multiple myeloma patients. In particular, the development and application of immunotherapy and high-dose therapy have demonstrated high response rates and have prolonged remission duration. Over the past decade, new morphologic or hybrid imaging techniques have gradually replaced conventional skeletal surveys. PET/CT using <sup>18</sup>F-FDG is a powerful imaging tool for the workup at diagnosis and for therapeutic evaluation allowing medullary and extramedullary assessment. The independent negative prognostic value for progression-free and overall survival derived from baseline PET-derived parameters such as the presence of extramedullary disease or paramedullary disease, as well as the number of focal bone lesions and SUV<sub>max</sub>, has been reported in several large prospective studies. During therapeutic evaluation, <sup>18</sup>F-FDG PET/CT is considered the reference imaging technique because it can be performed much earlier than MRI, which lacks specificity. Persistence of significant abnormal <sup>18</sup>F-FDG uptake after therapy is an independent negative prognostic factor, and <sup>18</sup>F-FDG PET/CT and medullary flow cytometry are complementary tools for detecting minimal residual disease before maintenance therapy. The definition of a PET metabolic complete response has recently been standardized and the interpretation criteria harmonized. The development of advanced PET analysis and radiomics using machine learning, as well as hybrid imaging with PET/MRI, offers new perspectives for multiple myeloma imaging. Most recently, innovative radiopharmaceuticals such as C-X-C chemokine receptor type 4-targeted small molecules and anti-CD38 radiolabeled antibodies have shown promising results for tumor phenotype imaging and as potential theranostics.</p>","PeriodicalId":16758,"journal":{"name":"Journal of Nuclear Medicine","volume":"64 9","pages":"1331-1343"},"PeriodicalIF":9.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478822/pdf/","citationCount":"1","resultStr":"{\"title\":\"New Developments in Myeloma Treatment and Response Assessment.\",\"authors\":\"Françoise Kraeber-Bodéré, Bastien Jamet, Davide Bezzi, Elena Zamagni, Philippe Moreau, Cristina Nanni\",\"doi\":\"10.2967/jnumed.122.264972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent innovative strategies have dramatically redefined the therapeutic landscape for treating multiple myeloma patients. In particular, the development and application of immunotherapy and high-dose therapy have demonstrated high response rates and have prolonged remission duration. Over the past decade, new morphologic or hybrid imaging techniques have gradually replaced conventional skeletal surveys. PET/CT using <sup>18</sup>F-FDG is a powerful imaging tool for the workup at diagnosis and for therapeutic evaluation allowing medullary and extramedullary assessment. The independent negative prognostic value for progression-free and overall survival derived from baseline PET-derived parameters such as the presence of extramedullary disease or paramedullary disease, as well as the number of focal bone lesions and SUV<sub>max</sub>, has been reported in several large prospective studies. During therapeutic evaluation, <sup>18</sup>F-FDG PET/CT is considered the reference imaging technique because it can be performed much earlier than MRI, which lacks specificity. Persistence of significant abnormal <sup>18</sup>F-FDG uptake after therapy is an independent negative prognostic factor, and <sup>18</sup>F-FDG PET/CT and medullary flow cytometry are complementary tools for detecting minimal residual disease before maintenance therapy. The definition of a PET metabolic complete response has recently been standardized and the interpretation criteria harmonized. The development of advanced PET analysis and radiomics using machine learning, as well as hybrid imaging with PET/MRI, offers new perspectives for multiple myeloma imaging. Most recently, innovative radiopharmaceuticals such as C-X-C chemokine receptor type 4-targeted small molecules and anti-CD38 radiolabeled antibodies have shown promising results for tumor phenotype imaging and as potential theranostics.</p>\",\"PeriodicalId\":16758,\"journal\":{\"name\":\"Journal of Nuclear Medicine\",\"volume\":\"64 9\",\"pages\":\"1331-1343\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478822/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2967/jnumed.122.264972\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2967/jnumed.122.264972","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
New Developments in Myeloma Treatment and Response Assessment.
Recent innovative strategies have dramatically redefined the therapeutic landscape for treating multiple myeloma patients. In particular, the development and application of immunotherapy and high-dose therapy have demonstrated high response rates and have prolonged remission duration. Over the past decade, new morphologic or hybrid imaging techniques have gradually replaced conventional skeletal surveys. PET/CT using 18F-FDG is a powerful imaging tool for the workup at diagnosis and for therapeutic evaluation allowing medullary and extramedullary assessment. The independent negative prognostic value for progression-free and overall survival derived from baseline PET-derived parameters such as the presence of extramedullary disease or paramedullary disease, as well as the number of focal bone lesions and SUVmax, has been reported in several large prospective studies. During therapeutic evaluation, 18F-FDG PET/CT is considered the reference imaging technique because it can be performed much earlier than MRI, which lacks specificity. Persistence of significant abnormal 18F-FDG uptake after therapy is an independent negative prognostic factor, and 18F-FDG PET/CT and medullary flow cytometry are complementary tools for detecting minimal residual disease before maintenance therapy. The definition of a PET metabolic complete response has recently been standardized and the interpretation criteria harmonized. The development of advanced PET analysis and radiomics using machine learning, as well as hybrid imaging with PET/MRI, offers new perspectives for multiple myeloma imaging. Most recently, innovative radiopharmaceuticals such as C-X-C chemokine receptor type 4-targeted small molecules and anti-CD38 radiolabeled antibodies have shown promising results for tumor phenotype imaging and as potential theranostics.
期刊介绍:
The Journal of Nuclear Medicine (JNM), self-published by the Society of Nuclear Medicine and Molecular Imaging (SNMMI), provides readers worldwide with clinical and basic science investigations, continuing education articles, reviews, employment opportunities, and updates on practice and research. In the 2022 Journal Citation Reports (released in June 2023), JNM ranked sixth in impact among 203 medical journals worldwide in the radiology, nuclear medicine, and medical imaging category.