{"title":"利用纳米晶化技术改善氟苯尼考的肠道吸收和抗菌效果。","authors":"Yanling Liu, Yuqi Fang, Yuan Chen, Weibin Chen, Ziyu Cheng, Jun Yi, Xiaofang Li, Chongkai Gao, Fang Wu, Bohong Guo","doi":"10.1080/02652048.2022.2145381","DOIUrl":null,"url":null,"abstract":"<p><p>To study the effects of nanocrystallisation technology on the intestinal absorption properties and antibacterial activity of florfenicol (FF). The florfenicol nanocrystals (FF-NC) were prepared by wet grinding and spray drying. Additionally, changes in particle size, charge, morphology, and dissolution of FF-NC in the long-term stability were monitored by laser particle sizer, TEM, SEM, paddle method, and the structure of FF-NC powder was characterised by nuclear magnetic resonance (NMR) test. The antibacterial activity, intestinal absorption and intestinal histocompatibility of FF-NC were investigated by the stiletto, mini broth dilution susceptibility test, <i>in situ</i> single-pass intestinal perfusion (SPIP) and haematoxylin-eosin (H-E) staining. After 12 months of storage, the particle size and zeta potential of FF-NC were 280.43 ± 8.21 nm and -19.64 ± 3.45 mV, and the electron microscopy results showed that FF-NC were nearly circular with no adhesion between particles. In addition, the drug loading, encapsulation efficiency, and dissolution of FF-NC did not change significantly during storage. The inhibition zone of FF-NC against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> was 21.37 ± 1.70 mm and 25.17 ± 2.47 mm, respectively. Compared with the FF, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of FF-NC are reduced, and the absorption rate constant (<i>K</i><sub>a</sub>) and efficient permeability coefficient (<i>P</i><sub>eff</sub>) of FF-NC in the three intestinal segments were increased by 1.28, 0.25, and 9.10 times and 0.59, 0.17, and 6.0 times, respectively. The results of tissue sections showed that FF-NC had little damage to the small intestinal. Nanocrystallisation technology is an effective method to increase the intestinal absorption and antibacterial activity of FF.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"39 7-8","pages":"589-600"},"PeriodicalIF":3.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving intestinal absorption and antibacterial effect of florfenicol via nanocrystallisation technology.\",\"authors\":\"Yanling Liu, Yuqi Fang, Yuan Chen, Weibin Chen, Ziyu Cheng, Jun Yi, Xiaofang Li, Chongkai Gao, Fang Wu, Bohong Guo\",\"doi\":\"10.1080/02652048.2022.2145381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To study the effects of nanocrystallisation technology on the intestinal absorption properties and antibacterial activity of florfenicol (FF). The florfenicol nanocrystals (FF-NC) were prepared by wet grinding and spray drying. Additionally, changes in particle size, charge, morphology, and dissolution of FF-NC in the long-term stability were monitored by laser particle sizer, TEM, SEM, paddle method, and the structure of FF-NC powder was characterised by nuclear magnetic resonance (NMR) test. The antibacterial activity, intestinal absorption and intestinal histocompatibility of FF-NC were investigated by the stiletto, mini broth dilution susceptibility test, <i>in situ</i> single-pass intestinal perfusion (SPIP) and haematoxylin-eosin (H-E) staining. After 12 months of storage, the particle size and zeta potential of FF-NC were 280.43 ± 8.21 nm and -19.64 ± 3.45 mV, and the electron microscopy results showed that FF-NC were nearly circular with no adhesion between particles. In addition, the drug loading, encapsulation efficiency, and dissolution of FF-NC did not change significantly during storage. The inhibition zone of FF-NC against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> was 21.37 ± 1.70 mm and 25.17 ± 2.47 mm, respectively. Compared with the FF, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of FF-NC are reduced, and the absorption rate constant (<i>K</i><sub>a</sub>) and efficient permeability coefficient (<i>P</i><sub>eff</sub>) of FF-NC in the three intestinal segments were increased by 1.28, 0.25, and 9.10 times and 0.59, 0.17, and 6.0 times, respectively. The results of tissue sections showed that FF-NC had little damage to the small intestinal. Nanocrystallisation technology is an effective method to increase the intestinal absorption and antibacterial activity of FF.</p>\",\"PeriodicalId\":16391,\"journal\":{\"name\":\"Journal of microencapsulation\",\"volume\":\"39 7-8\",\"pages\":\"589-600\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microencapsulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02652048.2022.2145381\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2022.2145381","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Improving intestinal absorption and antibacterial effect of florfenicol via nanocrystallisation technology.
To study the effects of nanocrystallisation technology on the intestinal absorption properties and antibacterial activity of florfenicol (FF). The florfenicol nanocrystals (FF-NC) were prepared by wet grinding and spray drying. Additionally, changes in particle size, charge, morphology, and dissolution of FF-NC in the long-term stability were monitored by laser particle sizer, TEM, SEM, paddle method, and the structure of FF-NC powder was characterised by nuclear magnetic resonance (NMR) test. The antibacterial activity, intestinal absorption and intestinal histocompatibility of FF-NC were investigated by the stiletto, mini broth dilution susceptibility test, in situ single-pass intestinal perfusion (SPIP) and haematoxylin-eosin (H-E) staining. After 12 months of storage, the particle size and zeta potential of FF-NC were 280.43 ± 8.21 nm and -19.64 ± 3.45 mV, and the electron microscopy results showed that FF-NC were nearly circular with no adhesion between particles. In addition, the drug loading, encapsulation efficiency, and dissolution of FF-NC did not change significantly during storage. The inhibition zone of FF-NC against Escherichia coli and Staphylococcus aureus was 21.37 ± 1.70 mm and 25.17 ± 2.47 mm, respectively. Compared with the FF, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of FF-NC are reduced, and the absorption rate constant (Ka) and efficient permeability coefficient (Peff) of FF-NC in the three intestinal segments were increased by 1.28, 0.25, and 9.10 times and 0.59, 0.17, and 6.0 times, respectively. The results of tissue sections showed that FF-NC had little damage to the small intestinal. Nanocrystallisation technology is an effective method to increase the intestinal absorption and antibacterial activity of FF.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.