{"title":"益母鼠尿通过调控miR-18a-5p/SLC40A1轴抑制前列腺癌体外和体内生长。","authors":"Bin Liang, Shouxi Cui, Songnian Zou","doi":"10.4103/0304-4920.365459","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer is a leading cause of cancer-associated death in males. Leonurine (Leo) is a pleiotropic anti-tumor agent isolated from traditional Chinese herb that was used in gynecologic treatments. However, its pharmacological effect against prostate cancer progression remains unclear. Here, we showed that Leo dose dependently inhibited prostate cancer cell proliferation, promoted cell apoptosis, and induced cell cycle arrest. Moreover, we noticed that miR-18a-5p was downregulated and the solute carrier family 40 member 1 (SLC40A1) is upregulated by Leo treatment. SLC40A1 knockdown by siRNA abrogated the inhibitory effect of Leo on prostate cancer progression. Notably, Leo also significantly inhibited prostate cancer progression in a subcutaneous xenograft tumor mouse model in vivo. This study further unveiled the mechanism by which Leo inhibited prostate cancer progression, which provides a promising potential for its future clinical application.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Leonurine suppresses prostate cancer growth <i>in vitro</i> and <i>in vivo</i> by regulating miR-18a-5p/SLC40A1 axis.\",\"authors\":\"Bin Liang, Shouxi Cui, Songnian Zou\",\"doi\":\"10.4103/0304-4920.365459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer is a leading cause of cancer-associated death in males. Leonurine (Leo) is a pleiotropic anti-tumor agent isolated from traditional Chinese herb that was used in gynecologic treatments. However, its pharmacological effect against prostate cancer progression remains unclear. Here, we showed that Leo dose dependently inhibited prostate cancer cell proliferation, promoted cell apoptosis, and induced cell cycle arrest. Moreover, we noticed that miR-18a-5p was downregulated and the solute carrier family 40 member 1 (SLC40A1) is upregulated by Leo treatment. SLC40A1 knockdown by siRNA abrogated the inhibitory effect of Leo on prostate cancer progression. Notably, Leo also significantly inhibited prostate cancer progression in a subcutaneous xenograft tumor mouse model in vivo. This study further unveiled the mechanism by which Leo inhibited prostate cancer progression, which provides a promising potential for its future clinical application.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/0304-4920.365459\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/0304-4920.365459","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Leonurine suppresses prostate cancer growth in vitro and in vivo by regulating miR-18a-5p/SLC40A1 axis.
Prostate cancer is a leading cause of cancer-associated death in males. Leonurine (Leo) is a pleiotropic anti-tumor agent isolated from traditional Chinese herb that was used in gynecologic treatments. However, its pharmacological effect against prostate cancer progression remains unclear. Here, we showed that Leo dose dependently inhibited prostate cancer cell proliferation, promoted cell apoptosis, and induced cell cycle arrest. Moreover, we noticed that miR-18a-5p was downregulated and the solute carrier family 40 member 1 (SLC40A1) is upregulated by Leo treatment. SLC40A1 knockdown by siRNA abrogated the inhibitory effect of Leo on prostate cancer progression. Notably, Leo also significantly inhibited prostate cancer progression in a subcutaneous xenograft tumor mouse model in vivo. This study further unveiled the mechanism by which Leo inhibited prostate cancer progression, which provides a promising potential for its future clinical application.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.