{"title":"利用新型径向基函数神经网络和水母元启发式算法进行脑电信号分类。","authors":"Homayoun Rastegar, Davar Giveki, Morteza Choubin","doi":"10.1007/s12065-022-00802-2","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this paper is to investigate a new method for EEG signals classification. A powerful method for detecting these signals can greatly contribute to areas such as making robotic arms for disabled people, mind reading and lie detection tools. To this end, this study makes two interesting contributions. As a major contribution, a new classifier based on a radial basis function neural network (RBFNN) is presented. As the center determination method of a RBFNN classifier has a high impact on the final classification results, we have adopted Jellyfish search (JS) algorithm for choosing the centers of the Gaussian functions in the hidden layer of the RBFNN classifier. Additionally, Locally Linear Embedding (LLE) technique is investigated for reducing the dimensionality of EEG signals. Two series of various experiments are designed to validate our proposals. In the first set of the experiments, the proposed RBFNN classifier is compared with other state-of-the-art RBFNN classifiers. In the second set of the experiments, the performances of the proposed EEG signals classifications are evaluated on a challenging dataset for EEG signals classification. The experimental results demonstrate the superiority of our proposed method even compared to the methods based on the convolutional neural networks.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12065-022-00802-2.</p>","PeriodicalId":46237,"journal":{"name":"Evolutionary Intelligence","volume":" ","pages":"1-12"},"PeriodicalIF":2.3000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789523/pdf/","citationCount":"0","resultStr":"{\"title\":\"EEG signals classification using a new radial basis function neural network and jellyfish meta-heuristic algorithm.\",\"authors\":\"Homayoun Rastegar, Davar Giveki, Morteza Choubin\",\"doi\":\"10.1007/s12065-022-00802-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this paper is to investigate a new method for EEG signals classification. A powerful method for detecting these signals can greatly contribute to areas such as making robotic arms for disabled people, mind reading and lie detection tools. To this end, this study makes two interesting contributions. As a major contribution, a new classifier based on a radial basis function neural network (RBFNN) is presented. As the center determination method of a RBFNN classifier has a high impact on the final classification results, we have adopted Jellyfish search (JS) algorithm for choosing the centers of the Gaussian functions in the hidden layer of the RBFNN classifier. Additionally, Locally Linear Embedding (LLE) technique is investigated for reducing the dimensionality of EEG signals. Two series of various experiments are designed to validate our proposals. In the first set of the experiments, the proposed RBFNN classifier is compared with other state-of-the-art RBFNN classifiers. In the second set of the experiments, the performances of the proposed EEG signals classifications are evaluated on a challenging dataset for EEG signals classification. The experimental results demonstrate the superiority of our proposed method even compared to the methods based on the convolutional neural networks.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12065-022-00802-2.</p>\",\"PeriodicalId\":46237,\"journal\":{\"name\":\"Evolutionary Intelligence\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789523/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12065-022-00802-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12065-022-00802-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
EEG signals classification using a new radial basis function neural network and jellyfish meta-heuristic algorithm.
The purpose of this paper is to investigate a new method for EEG signals classification. A powerful method for detecting these signals can greatly contribute to areas such as making robotic arms for disabled people, mind reading and lie detection tools. To this end, this study makes two interesting contributions. As a major contribution, a new classifier based on a radial basis function neural network (RBFNN) is presented. As the center determination method of a RBFNN classifier has a high impact on the final classification results, we have adopted Jellyfish search (JS) algorithm for choosing the centers of the Gaussian functions in the hidden layer of the RBFNN classifier. Additionally, Locally Linear Embedding (LLE) technique is investigated for reducing the dimensionality of EEG signals. Two series of various experiments are designed to validate our proposals. In the first set of the experiments, the proposed RBFNN classifier is compared with other state-of-the-art RBFNN classifiers. In the second set of the experiments, the performances of the proposed EEG signals classifications are evaluated on a challenging dataset for EEG signals classification. The experimental results demonstrate the superiority of our proposed method even compared to the methods based on the convolutional neural networks.
Supplementary information: The online version contains supplementary material available at 10.1007/s12065-022-00802-2.
期刊介绍:
This Journal provides an international forum for the timely publication and dissemination of foundational and applied research in the domain of Evolutionary Intelligence. The spectrum of emerging fields in contemporary artificial intelligence, including Big Data, Deep Learning, Computational Neuroscience bridged with evolutionary computing and other population-based search methods constitute the flag of Evolutionary Intelligence Journal.Topics of interest for Evolutionary Intelligence refer to different aspects of evolutionary models of computation empowered with intelligence-based approaches, including but not limited to architectures, model optimization and tuning, machine learning algorithms, life inspired adaptive algorithms, swarm-oriented strategies, high performance computing, massive data processing, with applications to domains like computer vision, image processing, simulation, robotics, computational finance, media, internet of things, medicine, bioinformatics, smart cities, and similar. Surveys outlining the state of art in specific subfields and applications are welcome.