Theodore G Drivas, Anastasia Lucas, Marylyn D Ritchie
{"title":"eQTpLot:一个用户友好的 R 软件包,用于可视化 eQTL 和 GWAS 信号之间的共定位。","authors":"Theodore G Drivas, Anastasia Lucas, Marylyn D Ritchie","doi":"10.1186/s13040-021-00267-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Genomic studies increasingly integrate expression quantitative trait loci (eQTL) information into their analysis pipelines, but few tools exist for the visualization of colocalization between eQTL and GWAS results. Those tools that do exist are limited in their analysis options, and do not integrate eQTL and GWAS information into a single figure panel, making the visualization of colocalization difficult.</p><p><strong>Results: </strong>To address this issue, we developed the intuitive and user-friendly R package eQTpLot. eQTpLot takes as input standard GWAS and cis-eQTL summary statistics, and optional pairwise LD information, to generate a series of plots visualizing colocalization, correlation, and enrichment between eQTL and GWAS signals for a given gene-trait pair. With eQTpLot, investigators can easily generate a series of customizable plots clearly illustrating, for a given gene-trait pair: 1) colocalization between GWAS and eQTL signals, 2) correlation between GWAS and eQTL p-values, 3) enrichment of eQTLs among trait-significant variants, 4) the LD landscape of the locus in question, and 5) the relationship between the direction of effect of eQTL signals and the direction of effect of colocalizing GWAS peaks. These clear and comprehensive plots provide a unique view of eQTL-GWAS colocalization, allowing for a more complete understanding of the interaction between gene expression and trait associations.</p><p><strong>Conclusions: </strong>eQTpLot provides a unique, user-friendly, and intuitive means of visualizing eQTL and GWAS signal colocalization, incorporating novel features not found in other eQTL visualization software. We believe eQTpLot will prove a useful tool for investigators seeking a convenient and customizable visualization of eQTL and GWAS data colocalization.</p><p><strong>Availability and implementation: </strong>the eQTpLot R package and tutorial are available at https://github.com/RitchieLab/eQTpLot.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"14 1","pages":"32"},"PeriodicalIF":4.0000,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285863/pdf/","citationCount":"0","resultStr":"{\"title\":\"eQTpLot: a user-friendly R package for the visualization of colocalization between eQTL and GWAS signals.\",\"authors\":\"Theodore G Drivas, Anastasia Lucas, Marylyn D Ritchie\",\"doi\":\"10.1186/s13040-021-00267-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Genomic studies increasingly integrate expression quantitative trait loci (eQTL) information into their analysis pipelines, but few tools exist for the visualization of colocalization between eQTL and GWAS results. Those tools that do exist are limited in their analysis options, and do not integrate eQTL and GWAS information into a single figure panel, making the visualization of colocalization difficult.</p><p><strong>Results: </strong>To address this issue, we developed the intuitive and user-friendly R package eQTpLot. eQTpLot takes as input standard GWAS and cis-eQTL summary statistics, and optional pairwise LD information, to generate a series of plots visualizing colocalization, correlation, and enrichment between eQTL and GWAS signals for a given gene-trait pair. With eQTpLot, investigators can easily generate a series of customizable plots clearly illustrating, for a given gene-trait pair: 1) colocalization between GWAS and eQTL signals, 2) correlation between GWAS and eQTL p-values, 3) enrichment of eQTLs among trait-significant variants, 4) the LD landscape of the locus in question, and 5) the relationship between the direction of effect of eQTL signals and the direction of effect of colocalizing GWAS peaks. These clear and comprehensive plots provide a unique view of eQTL-GWAS colocalization, allowing for a more complete understanding of the interaction between gene expression and trait associations.</p><p><strong>Conclusions: </strong>eQTpLot provides a unique, user-friendly, and intuitive means of visualizing eQTL and GWAS signal colocalization, incorporating novel features not found in other eQTL visualization software. We believe eQTpLot will prove a useful tool for investigators seeking a convenient and customizable visualization of eQTL and GWAS data colocalization.</p><p><strong>Availability and implementation: </strong>the eQTpLot R package and tutorial are available at https://github.com/RitchieLab/eQTpLot.</p>\",\"PeriodicalId\":48947,\"journal\":{\"name\":\"Biodata Mining\",\"volume\":\"14 1\",\"pages\":\"32\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285863/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodata Mining\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13040-021-00267-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-021-00267-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
eQTpLot: a user-friendly R package for the visualization of colocalization between eQTL and GWAS signals.
Background: Genomic studies increasingly integrate expression quantitative trait loci (eQTL) information into their analysis pipelines, but few tools exist for the visualization of colocalization between eQTL and GWAS results. Those tools that do exist are limited in their analysis options, and do not integrate eQTL and GWAS information into a single figure panel, making the visualization of colocalization difficult.
Results: To address this issue, we developed the intuitive and user-friendly R package eQTpLot. eQTpLot takes as input standard GWAS and cis-eQTL summary statistics, and optional pairwise LD information, to generate a series of plots visualizing colocalization, correlation, and enrichment between eQTL and GWAS signals for a given gene-trait pair. With eQTpLot, investigators can easily generate a series of customizable plots clearly illustrating, for a given gene-trait pair: 1) colocalization between GWAS and eQTL signals, 2) correlation between GWAS and eQTL p-values, 3) enrichment of eQTLs among trait-significant variants, 4) the LD landscape of the locus in question, and 5) the relationship between the direction of effect of eQTL signals and the direction of effect of colocalizing GWAS peaks. These clear and comprehensive plots provide a unique view of eQTL-GWAS colocalization, allowing for a more complete understanding of the interaction between gene expression and trait associations.
Conclusions: eQTpLot provides a unique, user-friendly, and intuitive means of visualizing eQTL and GWAS signal colocalization, incorporating novel features not found in other eQTL visualization software. We believe eQTpLot will prove a useful tool for investigators seeking a convenient and customizable visualization of eQTL and GWAS data colocalization.
Availability and implementation: the eQTpLot R package and tutorial are available at https://github.com/RitchieLab/eQTpLot.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.