Cecilia Dalle Ore, Christina Coleman, Nalin Gupta, Sabine Mueller
{"title":"弥漫性内生性脑桥胶质瘤的治疗进展及临床研究进展。","authors":"Cecilia Dalle Ore, Christina Coleman, Nalin Gupta, Sabine Mueller","doi":"10.1159/000529099","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diffuse intrinsic pontine gliomas (DIPGs) are high-grade gliomas (HGGs) that occur primarily in children, and represent a leading cause of death in pediatric patients with brain tumors with a median overall survival of only 8-11 months.</p><p><strong>Summary: </strong>While these lesions were previously thought to behave similarly to adult HGG, emerging data have demonstrated that DIPG is a biologically distinct entity from adult HGG frequently driven by mutations in the histone genes H3.3 and H3.1 not found in adult glioma. While biopsy of DIPG was historically felt to confer unacceptable risk of morbidity and mortality, multiple studies have demonstrated that stereotactic biopsy of DIPG is safe, allowing not only for improved understanding of DIPG but also forming the basis for protocols for personalized medicine in DIPG. However, current options for personalized medicine in DIPG are limited by the lack of efficacious targeted therapies for the mutations commonly found in DIPG. Multiple treatment modalities including targeted therapies, immunotherapy, convection-enhanced delivery, and focused ultrasound are in various stages of investigation.</p><p><strong>Key message: </strong>Increasing frequency of biopsy for DIPG has identified distinct driving mutations that may serve as therapeutic targets. Novel treatment modalities are under investigation.</p>","PeriodicalId":54631,"journal":{"name":"Pediatric Neurosurgery","volume":" ","pages":"259-266"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664325/pdf/","citationCount":"2","resultStr":"{\"title\":\"Advances and Clinical Trials Update in the Treatment of Diffuse Intrinsic Pontine Gliomas.\",\"authors\":\"Cecilia Dalle Ore, Christina Coleman, Nalin Gupta, Sabine Mueller\",\"doi\":\"10.1159/000529099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Diffuse intrinsic pontine gliomas (DIPGs) are high-grade gliomas (HGGs) that occur primarily in children, and represent a leading cause of death in pediatric patients with brain tumors with a median overall survival of only 8-11 months.</p><p><strong>Summary: </strong>While these lesions were previously thought to behave similarly to adult HGG, emerging data have demonstrated that DIPG is a biologically distinct entity from adult HGG frequently driven by mutations in the histone genes H3.3 and H3.1 not found in adult glioma. While biopsy of DIPG was historically felt to confer unacceptable risk of morbidity and mortality, multiple studies have demonstrated that stereotactic biopsy of DIPG is safe, allowing not only for improved understanding of DIPG but also forming the basis for protocols for personalized medicine in DIPG. However, current options for personalized medicine in DIPG are limited by the lack of efficacious targeted therapies for the mutations commonly found in DIPG. Multiple treatment modalities including targeted therapies, immunotherapy, convection-enhanced delivery, and focused ultrasound are in various stages of investigation.</p><p><strong>Key message: </strong>Increasing frequency of biopsy for DIPG has identified distinct driving mutations that may serve as therapeutic targets. Novel treatment modalities are under investigation.</p>\",\"PeriodicalId\":54631,\"journal\":{\"name\":\"Pediatric Neurosurgery\",\"volume\":\" \",\"pages\":\"259-266\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664325/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pediatric Neurosurgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000529099\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000529099","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Advances and Clinical Trials Update in the Treatment of Diffuse Intrinsic Pontine Gliomas.
Background: Diffuse intrinsic pontine gliomas (DIPGs) are high-grade gliomas (HGGs) that occur primarily in children, and represent a leading cause of death in pediatric patients with brain tumors with a median overall survival of only 8-11 months.
Summary: While these lesions were previously thought to behave similarly to adult HGG, emerging data have demonstrated that DIPG is a biologically distinct entity from adult HGG frequently driven by mutations in the histone genes H3.3 and H3.1 not found in adult glioma. While biopsy of DIPG was historically felt to confer unacceptable risk of morbidity and mortality, multiple studies have demonstrated that stereotactic biopsy of DIPG is safe, allowing not only for improved understanding of DIPG but also forming the basis for protocols for personalized medicine in DIPG. However, current options for personalized medicine in DIPG are limited by the lack of efficacious targeted therapies for the mutations commonly found in DIPG. Multiple treatment modalities including targeted therapies, immunotherapy, convection-enhanced delivery, and focused ultrasound are in various stages of investigation.
Key message: Increasing frequency of biopsy for DIPG has identified distinct driving mutations that may serve as therapeutic targets. Novel treatment modalities are under investigation.
期刊介绍:
Articles in ''Pediatric Neurosurgery'' strives to publish new information and observations in pediatric neurosurgery and the allied fields of neurology, neuroradiology and neuropathology as they relate to the etiology of neurologic diseases and the operative care of affected patients. In addition to experimental and clinical studies, the journal presents critical reviews which provide the reader with an update on selected topics as well as case histories and reports on advances in methodology and technique. This thought-provoking focus encourages dissemination of information from neurosurgeons and neuroscientists around the world that will be of interest to clinicians and researchers concerned with pediatric, congenital, and developmental diseases of the nervous system.