Jin-Gyu Cheong, Arjun Ravishankar, Siddhartha Sharma, Christopher N Parkhurst, Simon A Grassmann, Claire K Wingert, Paoline Laurent, Sai Ma, Lucinda Paddock, Isabella C Miranda, Emin Onur Karakaslar, Djamel Nehar-Belaid, Asa Thibodeau, Michael J Bale, Vinay K Kartha, Jim K Yee, Minh Y Mays, Chenyang Jiang, Andrew W Daman, Alexia Martinez de Paz, Dughan Ahimovic, Victor Ramos, Alexander Lercher, Erik Nielsen, Sergio Alvarez-Mulett, Ling Zheng, Andrew Earl, Alisha Yallowitz, Lexi Robbins, Elyse LaFond, Karissa L Weidman, Sabrina Racine-Brzostek, He S Yang, David R Price, Louise Leyre, André F Rendeiro, Hiranmayi Ravichandran, Junbum Kim, Alain C Borczuk, Charles M Rice, R Brad Jones, Edward J Schenck, Robert J Kaner, Amy Chadburn, Zhen Zhao, Virginia Pascual, Olivier Elemento, Robert E Schwartz, Jason D Buenrostro, Rachel E Niec, Franck J Barrat, Lindsay Lief, Joseph C Sun, Duygu Ucar, Steven Z Josefowicz
{"title":"先天免疫细胞及其祖细胞中冠状病毒感染的表观遗传记忆。","authors":"Jin-Gyu Cheong, Arjun Ravishankar, Siddhartha Sharma, Christopher N Parkhurst, Simon A Grassmann, Claire K Wingert, Paoline Laurent, Sai Ma, Lucinda Paddock, Isabella C Miranda, Emin Onur Karakaslar, Djamel Nehar-Belaid, Asa Thibodeau, Michael J Bale, Vinay K Kartha, Jim K Yee, Minh Y Mays, Chenyang Jiang, Andrew W Daman, Alexia Martinez de Paz, Dughan Ahimovic, Victor Ramos, Alexander Lercher, Erik Nielsen, Sergio Alvarez-Mulett, Ling Zheng, Andrew Earl, Alisha Yallowitz, Lexi Robbins, Elyse LaFond, Karissa L Weidman, Sabrina Racine-Brzostek, He S Yang, David R Price, Louise Leyre, André F Rendeiro, Hiranmayi Ravichandran, Junbum Kim, Alain C Borczuk, Charles M Rice, R Brad Jones, Edward J Schenck, Robert J Kaner, Amy Chadburn, Zhen Zhao, Virginia Pascual, Olivier Elemento, Robert E Schwartz, Jason D Buenrostro, Rachel E Niec, Franck J Barrat, Lindsay Lief, Joseph C Sun, Duygu Ucar, Steven Z Josefowicz","doi":"10.1016/j.cell.2023.07.019","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.</p>","PeriodicalId":9656,"journal":{"name":"Cell","volume":"186 18","pages":"3882-3902.e24"},"PeriodicalIF":45.5000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638861/pdf/","citationCount":"0","resultStr":"{\"title\":\"Epigenetic memory of coronavirus infection in innate immune cells and their progenitors.\",\"authors\":\"Jin-Gyu Cheong, Arjun Ravishankar, Siddhartha Sharma, Christopher N Parkhurst, Simon A Grassmann, Claire K Wingert, Paoline Laurent, Sai Ma, Lucinda Paddock, Isabella C Miranda, Emin Onur Karakaslar, Djamel Nehar-Belaid, Asa Thibodeau, Michael J Bale, Vinay K Kartha, Jim K Yee, Minh Y Mays, Chenyang Jiang, Andrew W Daman, Alexia Martinez de Paz, Dughan Ahimovic, Victor Ramos, Alexander Lercher, Erik Nielsen, Sergio Alvarez-Mulett, Ling Zheng, Andrew Earl, Alisha Yallowitz, Lexi Robbins, Elyse LaFond, Karissa L Weidman, Sabrina Racine-Brzostek, He S Yang, David R Price, Louise Leyre, André F Rendeiro, Hiranmayi Ravichandran, Junbum Kim, Alain C Borczuk, Charles M Rice, R Brad Jones, Edward J Schenck, Robert J Kaner, Amy Chadburn, Zhen Zhao, Virginia Pascual, Olivier Elemento, Robert E Schwartz, Jason D Buenrostro, Rachel E Niec, Franck J Barrat, Lindsay Lief, Joseph C Sun, Duygu Ucar, Steven Z Josefowicz\",\"doi\":\"10.1016/j.cell.2023.07.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.</p>\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":\"186 18\",\"pages\":\"3882-3902.e24\"},\"PeriodicalIF\":45.5000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638861/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2023.07.019\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2023.07.019","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Epigenetic memory of coronavirus infection in innate immune cells and their progenitors.
Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.