{"title":"混合二维卷积用于三维医学图像分割。","authors":"Jianyong Wang, Lei Zhang, Zhang Yi","doi":"10.1142/S0129065722500599","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) medical image segmentation plays a crucial role in medical care applications. Although various two-dimensional (2D) and 3D neural network models have been applied to 3D medical image segmentation and achieved impressive results, a trade-off remains between efficiency and accuracy. To address this issue, a novel mixture convolutional network (MixConvNet) is proposed, in which traditional 2D/3D convolutional blocks are replaced with novel MixConv blocks. In the MixConv block, 3D convolution is decomposed into a mixture of 2D convolutions from different views. Therefore, the MixConv block fully utilizes the advantages of 2D convolution and maintains the learning ability of 3D convolution. It acts as 3D convolutions and thus can process volumetric input directly and learn intra-slice features, which are absent in the traditional 2D convolutional block. By contrast, the proposed MixConv block only contains 2D convolutions; hence, it has significantly fewer trainable parameters and less computation budget than a block containing 3D convolutions. Furthermore, the proposed MixConvNet is pre-trained with small input patches and fine-tuned with large input patches to improve segmentation performance further. In experiments on the Decathlon Heart dataset and Sliver07 dataset, the proposed MixConvNet outperformed the state-of-the-art methods such as UNet3D, VNet, and nnUnet.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mixture 2D Convolutions for 3D Medical Image Segmentation.\",\"authors\":\"Jianyong Wang, Lei Zhang, Zhang Yi\",\"doi\":\"10.1142/S0129065722500599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) medical image segmentation plays a crucial role in medical care applications. Although various two-dimensional (2D) and 3D neural network models have been applied to 3D medical image segmentation and achieved impressive results, a trade-off remains between efficiency and accuracy. To address this issue, a novel mixture convolutional network (MixConvNet) is proposed, in which traditional 2D/3D convolutional blocks are replaced with novel MixConv blocks. In the MixConv block, 3D convolution is decomposed into a mixture of 2D convolutions from different views. Therefore, the MixConv block fully utilizes the advantages of 2D convolution and maintains the learning ability of 3D convolution. It acts as 3D convolutions and thus can process volumetric input directly and learn intra-slice features, which are absent in the traditional 2D convolutional block. By contrast, the proposed MixConv block only contains 2D convolutions; hence, it has significantly fewer trainable parameters and less computation budget than a block containing 3D convolutions. Furthermore, the proposed MixConvNet is pre-trained with small input patches and fine-tuned with large input patches to improve segmentation performance further. In experiments on the Decathlon Heart dataset and Sliver07 dataset, the proposed MixConvNet outperformed the state-of-the-art methods such as UNet3D, VNet, and nnUnet.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065722500599\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500599","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Mixture 2D Convolutions for 3D Medical Image Segmentation.
Three-dimensional (3D) medical image segmentation plays a crucial role in medical care applications. Although various two-dimensional (2D) and 3D neural network models have been applied to 3D medical image segmentation and achieved impressive results, a trade-off remains between efficiency and accuracy. To address this issue, a novel mixture convolutional network (MixConvNet) is proposed, in which traditional 2D/3D convolutional blocks are replaced with novel MixConv blocks. In the MixConv block, 3D convolution is decomposed into a mixture of 2D convolutions from different views. Therefore, the MixConv block fully utilizes the advantages of 2D convolution and maintains the learning ability of 3D convolution. It acts as 3D convolutions and thus can process volumetric input directly and learn intra-slice features, which are absent in the traditional 2D convolutional block. By contrast, the proposed MixConv block only contains 2D convolutions; hence, it has significantly fewer trainable parameters and less computation budget than a block containing 3D convolutions. Furthermore, the proposed MixConvNet is pre-trained with small input patches and fine-tuned with large input patches to improve segmentation performance further. In experiments on the Decathlon Heart dataset and Sliver07 dataset, the proposed MixConvNet outperformed the state-of-the-art methods such as UNet3D, VNet, and nnUnet.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.