混合二维卷积用于三维医学图像分割。

IF 6.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Neural Systems Pub Date : 2023-01-01 DOI:10.1142/S0129065722500599
Jianyong Wang, Lei Zhang, Zhang Yi
{"title":"混合二维卷积用于三维医学图像分割。","authors":"Jianyong Wang,&nbsp;Lei Zhang,&nbsp;Zhang Yi","doi":"10.1142/S0129065722500599","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) medical image segmentation plays a crucial role in medical care applications. Although various two-dimensional (2D) and 3D neural network models have been applied to 3D medical image segmentation and achieved impressive results, a trade-off remains between efficiency and accuracy. To address this issue, a novel mixture convolutional network (MixConvNet) is proposed, in which traditional 2D/3D convolutional blocks are replaced with novel MixConv blocks. In the MixConv block, 3D convolution is decomposed into a mixture of 2D convolutions from different views. Therefore, the MixConv block fully utilizes the advantages of 2D convolution and maintains the learning ability of 3D convolution. It acts as 3D convolutions and thus can process volumetric input directly and learn intra-slice features, which are absent in the traditional 2D convolutional block. By contrast, the proposed MixConv block only contains 2D convolutions; hence, it has significantly fewer trainable parameters and less computation budget than a block containing 3D convolutions. Furthermore, the proposed MixConvNet is pre-trained with small input patches and fine-tuned with large input patches to improve segmentation performance further. In experiments on the Decathlon Heart dataset and Sliver07 dataset, the proposed MixConvNet outperformed the state-of-the-art methods such as UNet3D, VNet, and nnUnet.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mixture 2D Convolutions for 3D Medical Image Segmentation.\",\"authors\":\"Jianyong Wang,&nbsp;Lei Zhang,&nbsp;Zhang Yi\",\"doi\":\"10.1142/S0129065722500599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) medical image segmentation plays a crucial role in medical care applications. Although various two-dimensional (2D) and 3D neural network models have been applied to 3D medical image segmentation and achieved impressive results, a trade-off remains between efficiency and accuracy. To address this issue, a novel mixture convolutional network (MixConvNet) is proposed, in which traditional 2D/3D convolutional blocks are replaced with novel MixConv blocks. In the MixConv block, 3D convolution is decomposed into a mixture of 2D convolutions from different views. Therefore, the MixConv block fully utilizes the advantages of 2D convolution and maintains the learning ability of 3D convolution. It acts as 3D convolutions and thus can process volumetric input directly and learn intra-slice features, which are absent in the traditional 2D convolutional block. By contrast, the proposed MixConv block only contains 2D convolutions; hence, it has significantly fewer trainable parameters and less computation budget than a block containing 3D convolutions. Furthermore, the proposed MixConvNet is pre-trained with small input patches and fine-tuned with large input patches to improve segmentation performance further. In experiments on the Decathlon Heart dataset and Sliver07 dataset, the proposed MixConvNet outperformed the state-of-the-art methods such as UNet3D, VNet, and nnUnet.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065722500599\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500599","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

三维医学图像分割在医疗保健应用中起着至关重要的作用。尽管各种二维(2D)和三维神经网络模型已经应用于三维医学图像分割并取得了令人印象深刻的结果,但效率和准确性之间仍然存在权衡。为了解决这一问题,提出了一种新的混合卷积网络(MixConvNet),该网络将传统的2D/3D卷积块替换为新的MixConv块。在MixConv块中,3D卷积被分解为来自不同视图的2D卷积的混合。因此,MixConv块充分利用了二维卷积的优点,同时又保持了三维卷积的学习能力。它作为三维卷积,因此可以直接处理体积输入并学习传统二维卷积块所不具备的片内特征。相比之下,所提出的MixConv块仅包含二维卷积;因此,与包含3D卷积的块相比,它具有更少的可训练参数和更少的计算预算。此外,所提出的MixConvNet使用小输入补丁进行预训练,并使用大输入补丁进行微调,以进一步提高分割性能。在Decathlon Heart数据集和Sliver07数据集的实验中,所提出的MixConvNet优于UNet3D、VNet和nnUnet等最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mixture 2D Convolutions for 3D Medical Image Segmentation.

Three-dimensional (3D) medical image segmentation plays a crucial role in medical care applications. Although various two-dimensional (2D) and 3D neural network models have been applied to 3D medical image segmentation and achieved impressive results, a trade-off remains between efficiency and accuracy. To address this issue, a novel mixture convolutional network (MixConvNet) is proposed, in which traditional 2D/3D convolutional blocks are replaced with novel MixConv blocks. In the MixConv block, 3D convolution is decomposed into a mixture of 2D convolutions from different views. Therefore, the MixConv block fully utilizes the advantages of 2D convolution and maintains the learning ability of 3D convolution. It acts as 3D convolutions and thus can process volumetric input directly and learn intra-slice features, which are absent in the traditional 2D convolutional block. By contrast, the proposed MixConv block only contains 2D convolutions; hence, it has significantly fewer trainable parameters and less computation budget than a block containing 3D convolutions. Furthermore, the proposed MixConvNet is pre-trained with small input patches and fine-tuned with large input patches to improve segmentation performance further. In experiments on the Decathlon Heart dataset and Sliver07 dataset, the proposed MixConvNet outperformed the state-of-the-art methods such as UNet3D, VNet, and nnUnet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Neural Systems
International Journal of Neural Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
28.80%
发文量
116
审稿时长
24 months
期刊介绍: The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.
期刊最新文献
Wavelet Transform, Reconstructed Phase Space, and Deep Learning Neural Networks for EEG-based Schizophrenia Detection Unsupervised EEG-Based Seizure Anomaly Detection with Denoising Diffusion Probabilistic Models Incremental Confidence Sampling with Optimal Transport for Domain Adaptation A model with dopamine depletion in basal ganglia and cerebellum predicts changes in thalamocortical beta oscillations Epileptic Seizure Prediction Using Spatiotemporal Feature Fusion on EEG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1