{"title":"银和铝的n -杂环羰基配合物的乙烯聚合。","authors":"Nanako Kimura, Daisuke Takeuchi, Sayoko Ogura, Ayaka Takazawa, Masaki Kakiage, Takeshi Yamanobe, Hiroki Uehara","doi":"10.1080/15685551.2023.2229641","DOIUrl":null,"url":null,"abstract":"<p><p>Various transition metal catalysts have been utilized for ethylene polymerization. Silver catalysts have attracted less attention as the catalysts, but are potential for production of high molecular weight polyethylene. Herein, we report that silver complexes with various <i>N</i>-heterocyclic carbene (NHC) ligands in combination with modified methylaluminoxane (MMAO) afford polyethylene with high molecular weight (melting point over 140°C). SEM observation showed that the produced polyethylene has ultra-high molecular weight. NMR investigation of the reaction between the silver complexes with organoaluminums indicate that the NHC ligands transfer from the silver complex to aluminum to produce NHC aluminum complexes. Ph<sub>3</sub>C[B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] abstract methyl group from the NHC aluminum complex to afford cationic aluminum complex. The NHC aluminum complex promoted ethylene polymerization in the presence of Ph<sub>3</sub>C[B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] and organoaluminums. NHC ligand also promoted ethylene polymerization in combination with MMAO to produce polyethylene with high melting point (140.7°C). Thus, the aluminum complexes are considered to be the actual active species in silver-catalyzed ethylene polymerization.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"26 1","pages":"182-189"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324440/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ethylene polymerization using <i>N</i>-Heterocyclic carbene complexes of silver and aluminum.\",\"authors\":\"Nanako Kimura, Daisuke Takeuchi, Sayoko Ogura, Ayaka Takazawa, Masaki Kakiage, Takeshi Yamanobe, Hiroki Uehara\",\"doi\":\"10.1080/15685551.2023.2229641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various transition metal catalysts have been utilized for ethylene polymerization. Silver catalysts have attracted less attention as the catalysts, but are potential for production of high molecular weight polyethylene. Herein, we report that silver complexes with various <i>N</i>-heterocyclic carbene (NHC) ligands in combination with modified methylaluminoxane (MMAO) afford polyethylene with high molecular weight (melting point over 140°C). SEM observation showed that the produced polyethylene has ultra-high molecular weight. NMR investigation of the reaction between the silver complexes with organoaluminums indicate that the NHC ligands transfer from the silver complex to aluminum to produce NHC aluminum complexes. Ph<sub>3</sub>C[B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] abstract methyl group from the NHC aluminum complex to afford cationic aluminum complex. The NHC aluminum complex promoted ethylene polymerization in the presence of Ph<sub>3</sub>C[B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] and organoaluminums. NHC ligand also promoted ethylene polymerization in combination with MMAO to produce polyethylene with high melting point (140.7°C). Thus, the aluminum complexes are considered to be the actual active species in silver-catalyzed ethylene polymerization.</p>\",\"PeriodicalId\":11170,\"journal\":{\"name\":\"Designed Monomers and Polymers\",\"volume\":\"26 1\",\"pages\":\"182-189\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324440/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designed Monomers and Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15685551.2023.2229641\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2023.2229641","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Ethylene polymerization using N-Heterocyclic carbene complexes of silver and aluminum.
Various transition metal catalysts have been utilized for ethylene polymerization. Silver catalysts have attracted less attention as the catalysts, but are potential for production of high molecular weight polyethylene. Herein, we report that silver complexes with various N-heterocyclic carbene (NHC) ligands in combination with modified methylaluminoxane (MMAO) afford polyethylene with high molecular weight (melting point over 140°C). SEM observation showed that the produced polyethylene has ultra-high molecular weight. NMR investigation of the reaction between the silver complexes with organoaluminums indicate that the NHC ligands transfer from the silver complex to aluminum to produce NHC aluminum complexes. Ph3C[B(C6F5)4] abstract methyl group from the NHC aluminum complex to afford cationic aluminum complex. The NHC aluminum complex promoted ethylene polymerization in the presence of Ph3C[B(C6F5)4] and organoaluminums. NHC ligand also promoted ethylene polymerization in combination with MMAO to produce polyethylene with high melting point (140.7°C). Thus, the aluminum complexes are considered to be the actual active species in silver-catalyzed ethylene polymerization.
期刊介绍:
Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work.
The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications.
DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to:
-macromolecular science, initiators, macroinitiators for macromolecular design
-kinetics, mechanism and modelling aspects of polymerization
-new methods of synthesis of known monomers
-new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization)
-functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers
-new polymeric materials with biomedical applications