Mariana Moysés-Oliveira, Luana Adami, Pedro Guerreiro, Amanda Mosini, Anna Kloster, Lais Cunha, Mayara Paschalidis, Bruna Pereira Marquezini, Gabriel Pires, Priscila Tempaku, Monica Andersen, Sergio Tufik
{"title":"内分泌和表观遗传调控是睡眠特征和长寿遗传基础的常见途径。","authors":"Mariana Moysés-Oliveira, Luana Adami, Pedro Guerreiro, Amanda Mosini, Anna Kloster, Lais Cunha, Mayara Paschalidis, Bruna Pereira Marquezini, Gabriel Pires, Priscila Tempaku, Monica Andersen, Sergio Tufik","doi":"10.1089/rej.2023.0019","DOIUrl":null,"url":null,"abstract":"<p><p>The amount of sleep needed over one's lifespan is age dependent and not sleeping enough or sleeping in excess is associated with increased morbidity and mortality. Yet, the convergent molecular mechanisms that link longevity and sleep are largely unknown. We performed a gene enrichment study that (1) identified genes associated with both longevity and sleep traits and (2) determined molecular pathways enriched among these shared genes. We manually curated two sets of genes, one associated with longevity and aging and the other with sleep traits (<i>e.g.,</i> insomnia, narcolepsy, sleep duration, chronotype, among others), with both gene lists heavily driven by hits from recent large-scale Genome-Wide Association Studies. There were 47 overlapping genes between the gene list associated with sleep traits (1064 genes total) and the genes associated with longevity (367 genes total), indicating significantly more overlap than expected by chance. An overrepresentation analysis identified enriched pathways that suggest endocrine and epigenetic regulation as potential shared mechanisms between sleep traits and longevity. Concordantly, functional network analysis retrieved two clusters, being one associated with proteins of nuclear functions and the other, with extracellular proteins. This overlapping gene set, and the highlighted biological pathways may serve as preliminary findings for new functional investigations of sleep and longevity shared genetic mechanisms.</p>","PeriodicalId":20979,"journal":{"name":"Rejuvenation research","volume":" ","pages":"206-213"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endocrine and Epigenetic Regulation as Common Pathways Underlying the Genetic Basis of Sleep Traits and Longevity.\",\"authors\":\"Mariana Moysés-Oliveira, Luana Adami, Pedro Guerreiro, Amanda Mosini, Anna Kloster, Lais Cunha, Mayara Paschalidis, Bruna Pereira Marquezini, Gabriel Pires, Priscila Tempaku, Monica Andersen, Sergio Tufik\",\"doi\":\"10.1089/rej.2023.0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The amount of sleep needed over one's lifespan is age dependent and not sleeping enough or sleeping in excess is associated with increased morbidity and mortality. Yet, the convergent molecular mechanisms that link longevity and sleep are largely unknown. We performed a gene enrichment study that (1) identified genes associated with both longevity and sleep traits and (2) determined molecular pathways enriched among these shared genes. We manually curated two sets of genes, one associated with longevity and aging and the other with sleep traits (<i>e.g.,</i> insomnia, narcolepsy, sleep duration, chronotype, among others), with both gene lists heavily driven by hits from recent large-scale Genome-Wide Association Studies. There were 47 overlapping genes between the gene list associated with sleep traits (1064 genes total) and the genes associated with longevity (367 genes total), indicating significantly more overlap than expected by chance. An overrepresentation analysis identified enriched pathways that suggest endocrine and epigenetic regulation as potential shared mechanisms between sleep traits and longevity. Concordantly, functional network analysis retrieved two clusters, being one associated with proteins of nuclear functions and the other, with extracellular proteins. This overlapping gene set, and the highlighted biological pathways may serve as preliminary findings for new functional investigations of sleep and longevity shared genetic mechanisms.</p>\",\"PeriodicalId\":20979,\"journal\":{\"name\":\"Rejuvenation research\",\"volume\":\" \",\"pages\":\"206-213\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rejuvenation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/rej.2023.0019\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rejuvenation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/rej.2023.0019","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Endocrine and Epigenetic Regulation as Common Pathways Underlying the Genetic Basis of Sleep Traits and Longevity.
The amount of sleep needed over one's lifespan is age dependent and not sleeping enough or sleeping in excess is associated with increased morbidity and mortality. Yet, the convergent molecular mechanisms that link longevity and sleep are largely unknown. We performed a gene enrichment study that (1) identified genes associated with both longevity and sleep traits and (2) determined molecular pathways enriched among these shared genes. We manually curated two sets of genes, one associated with longevity and aging and the other with sleep traits (e.g., insomnia, narcolepsy, sleep duration, chronotype, among others), with both gene lists heavily driven by hits from recent large-scale Genome-Wide Association Studies. There were 47 overlapping genes between the gene list associated with sleep traits (1064 genes total) and the genes associated with longevity (367 genes total), indicating significantly more overlap than expected by chance. An overrepresentation analysis identified enriched pathways that suggest endocrine and epigenetic regulation as potential shared mechanisms between sleep traits and longevity. Concordantly, functional network analysis retrieved two clusters, being one associated with proteins of nuclear functions and the other, with extracellular proteins. This overlapping gene set, and the highlighted biological pathways may serve as preliminary findings for new functional investigations of sleep and longevity shared genetic mechanisms.
期刊介绍:
Rejuvenation Research publishes cutting-edge, peer-reviewed research on rejuvenation therapies in the laboratory and the clinic. The Journal focuses on key explorations and advances that may ultimately contribute to slowing or reversing the aging process, and covers topics such as cardiovascular aging, DNA damage and repair, cloning, and cell immortalization and senescence.
Rejuvenation Research coverage includes:
Cell immortalization and senescence
Pluripotent stem cells
DNA damage/repair
Gene targeting, gene therapy, and genomics
Growth factors and nutrient supply/sensing
Immunosenescence
Comparative biology of aging
Tissue engineering
Late-life pathologies (cardiovascular, neurodegenerative and others)
Public policy and social context.