Renato R Roma, Lucas P Dias, Ana L E Santos, Romério R S Silva, Maria H C Santos, Bruno A M Rocha, Rômulo F Carneiro, Celso S Nagano, Alexandre H Sampaio, Maria L V Oliva, Cláudio G L Silva, Racquel O S Souza, Claudener S Teixeira
{"title":"从 Bauhinia pulchella (Benth) 种子中提取的一种非竞争性胰蛋白酶抑制剂的纯化、特征描述和抗凝血效果评估。","authors":"Renato R Roma, Lucas P Dias, Ana L E Santos, Romério R S Silva, Maria H C Santos, Bruno A M Rocha, Rômulo F Carneiro, Celso S Nagano, Alexandre H Sampaio, Maria L V Oliva, Cláudio G L Silva, Racquel O S Souza, Claudener S Teixeira","doi":"10.2174/1389203724666230908114115","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Trypsin inhibitors (TIs) have the ability to competitively or non-competitively bind to trypsin and inhibit its action. These inhibitors are commonly found in plants and are used in protease inhibition studies involved in biochemical pathways of pharmacological interest.</p><p><strong>Objectives: </strong>This work aimed to purify a trypsin inhibitor from <i>Bauhinia pulchella</i> seeds (<i>Bpu</i>TI), describing its kinetic mechanism and anticoagulant effect.</p><p><strong>Methods: </strong>Affinity chromatography, protein assay, and SDS-PAGE were used to purify the inhibitor. Mass spectrometry, inhibition assays, and enzyme kinetics were used to characterize the inhibitor. <i>In vitro</i> assays were performed to verify its ability to prolong blood clotting time.</p><p><strong>Results: </strong>Affinity chromatography on a Trypsin-Sepharose 4B column gave a yield of 43.1. <i>Bpu</i>TI has an apparent molecular mass of 20 kDa with glycosylation (1.15%). Protein identification was determined by MS/MS, and <i>Bpu</i>TI showed similarity to several Kunitz-type trypsin inhibitors. <i>Bpu</i>TI inhibited bovine trypsin as an uncompetitive inhibitor with IC50 (3 x 10<sup>-6</sup> M) and Ki (1.05 x 10<sup>-6</sup> M). Additionally, <i>Bpu</i>TI showed high stability to temperature and pH variations, maintaining its activity up to 100ºC and in extreme pH ranges. However, the inhibitor was susceptible to reducing agents, such as DTT, which completely abolished its activity. <i>Bpu</i>TI showed an anticoagulant effect <i>in vitro</i> at a concentration of 33 μM, prolonging clotting time by 2.6 times.</p><p><strong>Conclusion: </strong>Our results suggest that <i> Bpu</i>TI can be a biological tool to be used in blood clotting studies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Purification, Characterization and Evaluation of the Anticoagulant Effect of an Uncompetitive Trypsin Inhibitor obtained from <i>Bauhinia pulchella</i> (Benth) Seeds.\",\"authors\":\"Renato R Roma, Lucas P Dias, Ana L E Santos, Romério R S Silva, Maria H C Santos, Bruno A M Rocha, Rômulo F Carneiro, Celso S Nagano, Alexandre H Sampaio, Maria L V Oliva, Cláudio G L Silva, Racquel O S Souza, Claudener S Teixeira\",\"doi\":\"10.2174/1389203724666230908114115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Trypsin inhibitors (TIs) have the ability to competitively or non-competitively bind to trypsin and inhibit its action. These inhibitors are commonly found in plants and are used in protease inhibition studies involved in biochemical pathways of pharmacological interest.</p><p><strong>Objectives: </strong>This work aimed to purify a trypsin inhibitor from <i>Bauhinia pulchella</i> seeds (<i>Bpu</i>TI), describing its kinetic mechanism and anticoagulant effect.</p><p><strong>Methods: </strong>Affinity chromatography, protein assay, and SDS-PAGE were used to purify the inhibitor. Mass spectrometry, inhibition assays, and enzyme kinetics were used to characterize the inhibitor. <i>In vitro</i> assays were performed to verify its ability to prolong blood clotting time.</p><p><strong>Results: </strong>Affinity chromatography on a Trypsin-Sepharose 4B column gave a yield of 43.1. <i>Bpu</i>TI has an apparent molecular mass of 20 kDa with glycosylation (1.15%). Protein identification was determined by MS/MS, and <i>Bpu</i>TI showed similarity to several Kunitz-type trypsin inhibitors. <i>Bpu</i>TI inhibited bovine trypsin as an uncompetitive inhibitor with IC50 (3 x 10<sup>-6</sup> M) and Ki (1.05 x 10<sup>-6</sup> M). Additionally, <i>Bpu</i>TI showed high stability to temperature and pH variations, maintaining its activity up to 100ºC and in extreme pH ranges. However, the inhibitor was susceptible to reducing agents, such as DTT, which completely abolished its activity. <i>Bpu</i>TI showed an anticoagulant effect <i>in vitro</i> at a concentration of 33 μM, prolonging clotting time by 2.6 times.</p><p><strong>Conclusion: </strong>Our results suggest that <i> Bpu</i>TI can be a biological tool to be used in blood clotting studies.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/1389203724666230908114115\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389203724666230908114115","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Purification, Characterization and Evaluation of the Anticoagulant Effect of an Uncompetitive Trypsin Inhibitor obtained from Bauhinia pulchella (Benth) Seeds.
Introduction: Trypsin inhibitors (TIs) have the ability to competitively or non-competitively bind to trypsin and inhibit its action. These inhibitors are commonly found in plants and are used in protease inhibition studies involved in biochemical pathways of pharmacological interest.
Objectives: This work aimed to purify a trypsin inhibitor from Bauhinia pulchella seeds (BpuTI), describing its kinetic mechanism and anticoagulant effect.
Methods: Affinity chromatography, protein assay, and SDS-PAGE were used to purify the inhibitor. Mass spectrometry, inhibition assays, and enzyme kinetics were used to characterize the inhibitor. In vitro assays were performed to verify its ability to prolong blood clotting time.
Results: Affinity chromatography on a Trypsin-Sepharose 4B column gave a yield of 43.1. BpuTI has an apparent molecular mass of 20 kDa with glycosylation (1.15%). Protein identification was determined by MS/MS, and BpuTI showed similarity to several Kunitz-type trypsin inhibitors. BpuTI inhibited bovine trypsin as an uncompetitive inhibitor with IC50 (3 x 10-6 M) and Ki (1.05 x 10-6 M). Additionally, BpuTI showed high stability to temperature and pH variations, maintaining its activity up to 100ºC and in extreme pH ranges. However, the inhibitor was susceptible to reducing agents, such as DTT, which completely abolished its activity. BpuTI showed an anticoagulant effect in vitro at a concentration of 33 μM, prolonging clotting time by 2.6 times.
Conclusion: Our results suggest that BpuTI can be a biological tool to be used in blood clotting studies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.