{"title":"抗肿瘤坏死因子治疗通过抑制NCF4表达调控吞噬体通路治疗强直性脊柱炎。","authors":"Sha Liu, Hui Zhu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Ankylosing spondylitis (AS) is challenging to diagnose in its early stages, and treatment options are limited.</p><p><strong>Methods: </strong>GEO2R analysis and weighted gene co-expression network analysis (WGCNA) were used to identify DEGs and key modules. Kyoto Encyclopedia of Genes and Genomes analysis and Protein-protein interactions were used to identify core genes. Receiver operating characteristic curve, chi-square and t-test were used to analyze the correlation between gene expression and clinicopathological characteristics. Gene expression was detected using Real-time polymerase chain reaction and western blotting.</p><p><strong>Results: </strong>GEO2R analysis and WGCNA identified 1100 DEGs and brown module. The KEGG analysis revealed that 444 core genes were closely associated with specific pathways. PPIs demonstrated that a key module, consisting of 6 genes, was linked to the phagosome pathway. NCF4, identified as an effective biomarker, was selected for diagnosing AS. Bioinformatics analyses indicated that NCF4 could be associated with important clinical markers. RT-PCR and western blotting showed increased expression of NCF4 in AS, which decreased after anti-TNF therapy.</p><p><strong>Conclusions: </strong>Anti-TNF therapy may exert its therapeutic function by inhibiting NCF4 expression, hence controlling the phagosome pathway. NCF4 has the potential to function as a diagnostic and prognostic biomarker for AS.</p>","PeriodicalId":16430,"journal":{"name":"Journal of musculoskeletal & neuronal interactions","volume":"23 3","pages":"355-364"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/60/5b/JMNI-23-355.PMC10483821.pdf","citationCount":"0","resultStr":"{\"title\":\"Anti-TNF Therapy Regulates Phagosome Pathway by Inhibiting NCF4 Expression to Treat Ankylosing Spondylitis.\",\"authors\":\"Sha Liu, Hui Zhu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Ankylosing spondylitis (AS) is challenging to diagnose in its early stages, and treatment options are limited.</p><p><strong>Methods: </strong>GEO2R analysis and weighted gene co-expression network analysis (WGCNA) were used to identify DEGs and key modules. Kyoto Encyclopedia of Genes and Genomes analysis and Protein-protein interactions were used to identify core genes. Receiver operating characteristic curve, chi-square and t-test were used to analyze the correlation between gene expression and clinicopathological characteristics. Gene expression was detected using Real-time polymerase chain reaction and western blotting.</p><p><strong>Results: </strong>GEO2R analysis and WGCNA identified 1100 DEGs and brown module. The KEGG analysis revealed that 444 core genes were closely associated with specific pathways. PPIs demonstrated that a key module, consisting of 6 genes, was linked to the phagosome pathway. NCF4, identified as an effective biomarker, was selected for diagnosing AS. Bioinformatics analyses indicated that NCF4 could be associated with important clinical markers. RT-PCR and western blotting showed increased expression of NCF4 in AS, which decreased after anti-TNF therapy.</p><p><strong>Conclusions: </strong>Anti-TNF therapy may exert its therapeutic function by inhibiting NCF4 expression, hence controlling the phagosome pathway. NCF4 has the potential to function as a diagnostic and prognostic biomarker for AS.</p>\",\"PeriodicalId\":16430,\"journal\":{\"name\":\"Journal of musculoskeletal & neuronal interactions\",\"volume\":\"23 3\",\"pages\":\"355-364\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/60/5b/JMNI-23-355.PMC10483821.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of musculoskeletal & neuronal interactions\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of musculoskeletal & neuronal interactions","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Anti-TNF Therapy Regulates Phagosome Pathway by Inhibiting NCF4 Expression to Treat Ankylosing Spondylitis.
Objectives: Ankylosing spondylitis (AS) is challenging to diagnose in its early stages, and treatment options are limited.
Methods: GEO2R analysis and weighted gene co-expression network analysis (WGCNA) were used to identify DEGs and key modules. Kyoto Encyclopedia of Genes and Genomes analysis and Protein-protein interactions were used to identify core genes. Receiver operating characteristic curve, chi-square and t-test were used to analyze the correlation between gene expression and clinicopathological characteristics. Gene expression was detected using Real-time polymerase chain reaction and western blotting.
Results: GEO2R analysis and WGCNA identified 1100 DEGs and brown module. The KEGG analysis revealed that 444 core genes were closely associated with specific pathways. PPIs demonstrated that a key module, consisting of 6 genes, was linked to the phagosome pathway. NCF4, identified as an effective biomarker, was selected for diagnosing AS. Bioinformatics analyses indicated that NCF4 could be associated with important clinical markers. RT-PCR and western blotting showed increased expression of NCF4 in AS, which decreased after anti-TNF therapy.
Conclusions: Anti-TNF therapy may exert its therapeutic function by inhibiting NCF4 expression, hence controlling the phagosome pathway. NCF4 has the potential to function as a diagnostic and prognostic biomarker for AS.
期刊介绍:
The Journal of Musculoskeletal and Neuronal Interactions (JMNI) is an academic journal dealing with the pathophysiology and treatment of musculoskeletal disorders. It is published quarterly (months of issue March, June, September, December). Its purpose is to publish original, peer-reviewed papers of research and clinical experience in all areas of the musculoskeletal system and its interactions with the nervous system, especially metabolic bone diseases, with particular emphasis on osteoporosis. Additionally, JMNI publishes the Abstracts from the biannual meetings of the International Society of Musculoskeletal and Neuronal Interactions, and hosts Abstracts of other meetings on topics related to the aims and scope of JMNI.