{"title":"使用多输入多输出的手足口病多步骤预测模型的评估:以中国成都为例。","authors":"Xiaoran Geng, Yue Ma, Wennian Cai, Yuanyi Zha, Tao Zhang, Huadong Zhang, Changhong Yang, Fei Yin, Tiejun Shui","doi":"10.1371/journal.pntd.0011587","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hand, foot and mouth disease (HFMD) is a public health concern that threatens the health of children. Accurately forecasting of HFMD cases multiple days ahead and early detection of peaks in the number of cases followed by timely response are essential for HFMD prevention and control. However, many studies mainly predict future one-day incidence, which reduces the flexibility of prevention and control.</p><p><strong>Methods: </strong>We collected the daily number of HFMD cases among children aged 0-14 years in Chengdu from 2011 to 2017, as well as meteorological and air pollutant data for the same period. The LSTM, Seq2Seq, Seq2Seq-Luong and Seq2Seq-Shih models were used to perform multi-step prediction of HFMD through multi-input multi-output. We evaluated the models in terms of overall prediction performance, the time delay and intensity of detection peaks.</p><p><strong>Results: </strong>From 2011 to 2017, HFMD in Chengdu showed seasonal trends that were consistent with temperature, air pressure, rainfall, relative humidity, and PM10. The Seq2Seq-Shih model achieved the best performance, with RMSE, sMAPE and PCC values of 13.943~22.192, 17.880~27.937, and 0.887~0.705 for the 2-day to 15-day predictions, respectively. Meanwhile, the Seq2Seq-Shih model is able to detect peaks in the next 15 days with a smaller time delay.</p><p><strong>Conclusions: </strong>The deep learning Seq2Seq-Shih model achieves the best performance in overall and peak prediction, and is applicable to HFMD multi-step prediction based on environmental factors.</p>","PeriodicalId":20260,"journal":{"name":"PLoS Neglected Tropical Diseases","volume":"17 9","pages":"e0011587"},"PeriodicalIF":3.8000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511093/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of models for multi-step forecasting of hand, foot and mouth disease using multi-input multi-output: A case study of Chengdu, China.\",\"authors\":\"Xiaoran Geng, Yue Ma, Wennian Cai, Yuanyi Zha, Tao Zhang, Huadong Zhang, Changhong Yang, Fei Yin, Tiejun Shui\",\"doi\":\"10.1371/journal.pntd.0011587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hand, foot and mouth disease (HFMD) is a public health concern that threatens the health of children. Accurately forecasting of HFMD cases multiple days ahead and early detection of peaks in the number of cases followed by timely response are essential for HFMD prevention and control. However, many studies mainly predict future one-day incidence, which reduces the flexibility of prevention and control.</p><p><strong>Methods: </strong>We collected the daily number of HFMD cases among children aged 0-14 years in Chengdu from 2011 to 2017, as well as meteorological and air pollutant data for the same period. The LSTM, Seq2Seq, Seq2Seq-Luong and Seq2Seq-Shih models were used to perform multi-step prediction of HFMD through multi-input multi-output. We evaluated the models in terms of overall prediction performance, the time delay and intensity of detection peaks.</p><p><strong>Results: </strong>From 2011 to 2017, HFMD in Chengdu showed seasonal trends that were consistent with temperature, air pressure, rainfall, relative humidity, and PM10. The Seq2Seq-Shih model achieved the best performance, with RMSE, sMAPE and PCC values of 13.943~22.192, 17.880~27.937, and 0.887~0.705 for the 2-day to 15-day predictions, respectively. Meanwhile, the Seq2Seq-Shih model is able to detect peaks in the next 15 days with a smaller time delay.</p><p><strong>Conclusions: </strong>The deep learning Seq2Seq-Shih model achieves the best performance in overall and peak prediction, and is applicable to HFMD multi-step prediction based on environmental factors.</p>\",\"PeriodicalId\":20260,\"journal\":{\"name\":\"PLoS Neglected Tropical Diseases\",\"volume\":\"17 9\",\"pages\":\"e0011587\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511093/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Neglected Tropical Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pntd.0011587\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Neglected Tropical Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.pntd.0011587","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Evaluation of models for multi-step forecasting of hand, foot and mouth disease using multi-input multi-output: A case study of Chengdu, China.
Background: Hand, foot and mouth disease (HFMD) is a public health concern that threatens the health of children. Accurately forecasting of HFMD cases multiple days ahead and early detection of peaks in the number of cases followed by timely response are essential for HFMD prevention and control. However, many studies mainly predict future one-day incidence, which reduces the flexibility of prevention and control.
Methods: We collected the daily number of HFMD cases among children aged 0-14 years in Chengdu from 2011 to 2017, as well as meteorological and air pollutant data for the same period. The LSTM, Seq2Seq, Seq2Seq-Luong and Seq2Seq-Shih models were used to perform multi-step prediction of HFMD through multi-input multi-output. We evaluated the models in terms of overall prediction performance, the time delay and intensity of detection peaks.
Results: From 2011 to 2017, HFMD in Chengdu showed seasonal trends that were consistent with temperature, air pressure, rainfall, relative humidity, and PM10. The Seq2Seq-Shih model achieved the best performance, with RMSE, sMAPE and PCC values of 13.943~22.192, 17.880~27.937, and 0.887~0.705 for the 2-day to 15-day predictions, respectively. Meanwhile, the Seq2Seq-Shih model is able to detect peaks in the next 15 days with a smaller time delay.
Conclusions: The deep learning Seq2Seq-Shih model achieves the best performance in overall and peak prediction, and is applicable to HFMD multi-step prediction based on environmental factors.
期刊介绍:
PLOS Neglected Tropical Diseases publishes research devoted to the pathology, epidemiology, prevention, treatment and control of the neglected tropical diseases (NTDs), as well as relevant public policy.
The NTDs are defined as a group of poverty-promoting chronic infectious diseases, which primarily occur in rural areas and poor urban areas of low-income and middle-income countries. Their impact on child health and development, pregnancy, and worker productivity, as well as their stigmatizing features limit economic stability.
All aspects of these diseases are considered, including:
Pathogenesis
Clinical features
Pharmacology and treatment
Diagnosis
Epidemiology
Vector biology
Vaccinology and prevention
Demographic, ecological and social determinants
Public health and policy aspects (including cost-effectiveness analyses).