Julián D Restrepo-Leal, Marie Belair, Jochen Fischer, Nicolas Richet, Florence Fontaine, Caroline Rémond, Olivier Fernandez, Ludovic Besaury
{"title":"在宿主和非宿主生物量上生长的葡萄树干病原体新融合球菌Bt-67产生的不同碳水化合物活性酶和次级代谢产物。","authors":"Julián D Restrepo-Leal, Marie Belair, Jochen Fischer, Nicolas Richet, Florence Fontaine, Caroline Rémond, Olivier Fernandez, Ludovic Besaury","doi":"10.1080/00275514.2023.2216122","DOIUrl":null,"url":null,"abstract":"<p><p><i>Neofusicoccum parvum</i> is one of the most aggressive Botryosphaeriaceae species associated with grapevine trunk diseases. This species may secrete enzymes capable of overcoming the plant barriers, leading to wood colonization. In addition to their roles in pathogenicity, there is an interest in taking advantage of <i>N. parvum</i> carbohydrate-active enzymes (CAZymes), related to plant cell wall degradation, for lignocellulose biorefining. Furthermore, <i>N. parvum</i> produces toxic secondary metabolites that may contribute to its virulence. In order to increase knowledge on the mechanisms underlying pathogenicity and virulence, as well as the exploration of its metabolism and CAZymes for lignocellulose biorefining, we evaluated the <i>N. parvum</i> strain Bt-67 capacity in producing lignocellulolytic enzymes and secondary metabolites when grown in vitro with two lignocellulosic biomasses: grapevine canes (GP) and wheat straw (WS). For this purpose, a multiphasic study combining enzymology, transcriptomic, and metabolomic analyses was performed. Enzyme assays showed higher xylanase, xylosidase, arabinofuranosidase, and glucosidase activities when the fungus was grown with WS. Fourier transform infrared (FTIR) spectroscopy confirmed the lignocellulosic biomass degradation caused by the secreted enzymes. Transcriptomics indicated that the <i>N. parvum</i> Bt-67 gene expression profiles in the presence of both biomasses were similar. In total, 134 genes coding CAZymes were up-regulated, where 94 of them were expressed in both biomass growth conditions. Lytic polysaccharide monooxygenases (LPMOs), glucosidases, and endoglucanases were the most represented CAZymes and correlated with the enzymatic activities obtained. The secondary metabolite production, analyzed by high-performance liquid chromatography-ultraviolet/visible spectophotometry-mass spectrometry (HPLC-UV/Vis-MS), was variable depending on the carbon source. The diversity of differentially produced metabolites was higher when <i>N. parvum</i> Bt-67 was grown with GP. Overall, these results provide insight into the influence of lignocellulosic biomass on virulence factor expressions. Moreover, this study opens the possibility of optimizing the enzyme production from <i>N. parvum</i> with potential use for lignocellulose biorefining.</p>","PeriodicalId":18779,"journal":{"name":"Mycologia","volume":"115 5","pages":"579-601"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential carbohydrate-active enzymes and secondary metabolite production by the grapevine trunk pathogen <i>Neofusicoccum parvum</i> Bt-67 grown on host and non-host biomass.\",\"authors\":\"Julián D Restrepo-Leal, Marie Belair, Jochen Fischer, Nicolas Richet, Florence Fontaine, Caroline Rémond, Olivier Fernandez, Ludovic Besaury\",\"doi\":\"10.1080/00275514.2023.2216122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Neofusicoccum parvum</i> is one of the most aggressive Botryosphaeriaceae species associated with grapevine trunk diseases. This species may secrete enzymes capable of overcoming the plant barriers, leading to wood colonization. In addition to their roles in pathogenicity, there is an interest in taking advantage of <i>N. parvum</i> carbohydrate-active enzymes (CAZymes), related to plant cell wall degradation, for lignocellulose biorefining. Furthermore, <i>N. parvum</i> produces toxic secondary metabolites that may contribute to its virulence. In order to increase knowledge on the mechanisms underlying pathogenicity and virulence, as well as the exploration of its metabolism and CAZymes for lignocellulose biorefining, we evaluated the <i>N. parvum</i> strain Bt-67 capacity in producing lignocellulolytic enzymes and secondary metabolites when grown in vitro with two lignocellulosic biomasses: grapevine canes (GP) and wheat straw (WS). For this purpose, a multiphasic study combining enzymology, transcriptomic, and metabolomic analyses was performed. Enzyme assays showed higher xylanase, xylosidase, arabinofuranosidase, and glucosidase activities when the fungus was grown with WS. Fourier transform infrared (FTIR) spectroscopy confirmed the lignocellulosic biomass degradation caused by the secreted enzymes. Transcriptomics indicated that the <i>N. parvum</i> Bt-67 gene expression profiles in the presence of both biomasses were similar. In total, 134 genes coding CAZymes were up-regulated, where 94 of them were expressed in both biomass growth conditions. Lytic polysaccharide monooxygenases (LPMOs), glucosidases, and endoglucanases were the most represented CAZymes and correlated with the enzymatic activities obtained. The secondary metabolite production, analyzed by high-performance liquid chromatography-ultraviolet/visible spectophotometry-mass spectrometry (HPLC-UV/Vis-MS), was variable depending on the carbon source. The diversity of differentially produced metabolites was higher when <i>N. parvum</i> Bt-67 was grown with GP. Overall, these results provide insight into the influence of lignocellulosic biomass on virulence factor expressions. Moreover, this study opens the possibility of optimizing the enzyme production from <i>N. parvum</i> with potential use for lignocellulose biorefining.</p>\",\"PeriodicalId\":18779,\"journal\":{\"name\":\"Mycologia\",\"volume\":\"115 5\",\"pages\":\"579-601\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycologia\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/00275514.2023.2216122\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycologia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/00275514.2023.2216122","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
Differential carbohydrate-active enzymes and secondary metabolite production by the grapevine trunk pathogen Neofusicoccum parvum Bt-67 grown on host and non-host biomass.
Neofusicoccum parvum is one of the most aggressive Botryosphaeriaceae species associated with grapevine trunk diseases. This species may secrete enzymes capable of overcoming the plant barriers, leading to wood colonization. In addition to their roles in pathogenicity, there is an interest in taking advantage of N. parvum carbohydrate-active enzymes (CAZymes), related to plant cell wall degradation, for lignocellulose biorefining. Furthermore, N. parvum produces toxic secondary metabolites that may contribute to its virulence. In order to increase knowledge on the mechanisms underlying pathogenicity and virulence, as well as the exploration of its metabolism and CAZymes for lignocellulose biorefining, we evaluated the N. parvum strain Bt-67 capacity in producing lignocellulolytic enzymes and secondary metabolites when grown in vitro with two lignocellulosic biomasses: grapevine canes (GP) and wheat straw (WS). For this purpose, a multiphasic study combining enzymology, transcriptomic, and metabolomic analyses was performed. Enzyme assays showed higher xylanase, xylosidase, arabinofuranosidase, and glucosidase activities when the fungus was grown with WS. Fourier transform infrared (FTIR) spectroscopy confirmed the lignocellulosic biomass degradation caused by the secreted enzymes. Transcriptomics indicated that the N. parvum Bt-67 gene expression profiles in the presence of both biomasses were similar. In total, 134 genes coding CAZymes were up-regulated, where 94 of them were expressed in both biomass growth conditions. Lytic polysaccharide monooxygenases (LPMOs), glucosidases, and endoglucanases were the most represented CAZymes and correlated with the enzymatic activities obtained. The secondary metabolite production, analyzed by high-performance liquid chromatography-ultraviolet/visible spectophotometry-mass spectrometry (HPLC-UV/Vis-MS), was variable depending on the carbon source. The diversity of differentially produced metabolites was higher when N. parvum Bt-67 was grown with GP. Overall, these results provide insight into the influence of lignocellulosic biomass on virulence factor expressions. Moreover, this study opens the possibility of optimizing the enzyme production from N. parvum with potential use for lignocellulose biorefining.
期刊介绍:
International in coverage, Mycologia presents recent advances in mycology, emphasizing all aspects of the biology of Fungi and fungus-like organisms, including Lichens, Oomycetes and Slime Molds. The Journal emphasizes subjects including applied biology, biochemistry, cell biology, development, ecology, evolution, genetics, genomics, molecular biology, morphology, new techniques, animal or plant pathology, phylogenetics, physiology, aspects of secondary metabolism, systematics, and ultrastructure. In addition to research articles, reviews and short notes, Mycologia also includes invited papers based on presentations from the Annual Conference of the Mycological Society of America, such as Karling Lectures or Presidential Addresses.