噬菌体辅助进化和蛋白质工程产生了紧凑、高效的素材编辑器。

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Pub Date : 2023-08-31 DOI:10.1016/j.cell.2023.07.039
Jordan L Doman, Smriti Pandey, Monica E Neugebauer, Meirui An, Jessie R Davis, Peyton B Randolph, Amber McElroy, Xin D Gao, Aditya Raguram, Michelle F Richter, Kelcee A Everette, Samagya Banskota, Kathryn Tian, Y Allen Tao, Jakub Tolar, Mark J Osborn, David R Liu
{"title":"噬菌体辅助进化和蛋白质工程产生了紧凑、高效的素材编辑器。","authors":"Jordan L Doman, Smriti Pandey, Monica E Neugebauer, Meirui An, Jessie R Davis, Peyton B Randolph, Amber McElroy, Xin D Gao, Aditya Raguram, Michelle F Richter, Kelcee A Everette, Samagya Banskota, Kathryn Tian, Y Allen Tao, Jakub Tolar, Mark J Osborn, David R Liu","doi":"10.1016/j.cell.2023.07.039","DOIUrl":null,"url":null,"abstract":"<p><p>Prime editing enables a wide variety of precise genome edits in living cells. Here we use protein evolution and engineering to generate prime editors with reduced size and improved efficiency. Using phage-assisted evolution, we improved editing efficiencies of compact reverse transcriptases by up to 22-fold and generated prime editors that are 516-810 base pairs smaller than the current-generation editor PEmax. We discovered that different reverse transcriptases specialize in different types of edits and used this insight to generate reverse transcriptases that outperform PEmax and PEmaxΔRNaseH, the truncated editor used in dual-AAV delivery systems. Finally, we generated Cas9 domains that improve prime editing. These resulting editors (PE6a-g) enhance therapeutically relevant editing in patient-derived fibroblasts and primary human T-cells. PE6 variants also enable longer insertions to be installed in vivo following dual-AAV delivery, achieving 40% loxP insertion in the cortex of the murine brain, a 24-fold improvement compared to previous state-of-the-art prime editors.</p>","PeriodicalId":9656,"journal":{"name":"Cell","volume":"186 18","pages":"3983-4002.e26"},"PeriodicalIF":45.5000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482982/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phage-assisted evolution and protein engineering yield compact, efficient prime editors.\",\"authors\":\"Jordan L Doman, Smriti Pandey, Monica E Neugebauer, Meirui An, Jessie R Davis, Peyton B Randolph, Amber McElroy, Xin D Gao, Aditya Raguram, Michelle F Richter, Kelcee A Everette, Samagya Banskota, Kathryn Tian, Y Allen Tao, Jakub Tolar, Mark J Osborn, David R Liu\",\"doi\":\"10.1016/j.cell.2023.07.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prime editing enables a wide variety of precise genome edits in living cells. Here we use protein evolution and engineering to generate prime editors with reduced size and improved efficiency. Using phage-assisted evolution, we improved editing efficiencies of compact reverse transcriptases by up to 22-fold and generated prime editors that are 516-810 base pairs smaller than the current-generation editor PEmax. We discovered that different reverse transcriptases specialize in different types of edits and used this insight to generate reverse transcriptases that outperform PEmax and PEmaxΔRNaseH, the truncated editor used in dual-AAV delivery systems. Finally, we generated Cas9 domains that improve prime editing. These resulting editors (PE6a-g) enhance therapeutically relevant editing in patient-derived fibroblasts and primary human T-cells. PE6 variants also enable longer insertions to be installed in vivo following dual-AAV delivery, achieving 40% loxP insertion in the cortex of the murine brain, a 24-fold improvement compared to previous state-of-the-art prime editors.</p>\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":\"186 18\",\"pages\":\"3983-4002.e26\"},\"PeriodicalIF\":45.5000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482982/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2023.07.039\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2023.07.039","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

质粒编辑能在活细胞中进行各种精确的基因组编辑。在这里,我们利用蛋白质进化和工程技术生成了体积更小、效率更高的原基编辑器。利用噬菌体辅助进化,我们将紧凑型反转录酶的编辑效率提高了 22 倍,并生成了比当前一代编辑器 PEmax 小 516-810 个碱基对的原基编辑器。我们发现不同的反转录酶擅长不同类型的编辑,并利用这一洞察力生成了性能优于 PEmax 和 PEmaxΔRNaseH 的反转录酶,PEmaxΔRNaseH 是双 AAV 运送系统中使用的截短编辑器。最后,我们生成的 Cas9 结构域提高了素编辑能力。这些生成的编辑器(PE6a-g)提高了患者来源成纤维细胞和原代人类 T 细胞的治疗相关编辑能力。PE6 变体还能在体内通过双 AAV 传播实现更长的插入,在小鼠大脑皮层中实现了 40% 的 loxP 插入,比以前最先进的原生编辑器提高了 24 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phage-assisted evolution and protein engineering yield compact, efficient prime editors.

Prime editing enables a wide variety of precise genome edits in living cells. Here we use protein evolution and engineering to generate prime editors with reduced size and improved efficiency. Using phage-assisted evolution, we improved editing efficiencies of compact reverse transcriptases by up to 22-fold and generated prime editors that are 516-810 base pairs smaller than the current-generation editor PEmax. We discovered that different reverse transcriptases specialize in different types of edits and used this insight to generate reverse transcriptases that outperform PEmax and PEmaxΔRNaseH, the truncated editor used in dual-AAV delivery systems. Finally, we generated Cas9 domains that improve prime editing. These resulting editors (PE6a-g) enhance therapeutically relevant editing in patient-derived fibroblasts and primary human T-cells. PE6 variants also enable longer insertions to be installed in vivo following dual-AAV delivery, achieving 40% loxP insertion in the cortex of the murine brain, a 24-fold improvement compared to previous state-of-the-art prime editors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
期刊最新文献
Evolutionary genomics of the emergence of brown algae as key components of coastal ecosystems Fibroblastic reticular cells generate protective intratumoral T cell environments in lung cancer Glia-like taste cells mediate an intercellular mode of peripheral sweet adaptation Stress disrupts engram ensembles in lateral amygdala to generalize threat memory in mice The single-molecule accessibility landscape of newly replicated mammalian chromatin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1