Sattwikesh Paul, Karsten Schrobback, Phong Anh Tran, Christoph Meinert, Jordan William Davern, Angus Weekes, Udhaya Nedunchezhiyan, Travis Jacob Klein
{"title":"用于软骨再生的凝胶-乙二醇壳聚糖水凝胶:单轴机械刺激在增强机械、粘合和生化性能方面的作用。","authors":"Sattwikesh Paul, Karsten Schrobback, Phong Anh Tran, Christoph Meinert, Jordan William Davern, Angus Weekes, Udhaya Nedunchezhiyan, Travis Jacob Klein","doi":"10.1063/5.0160472","DOIUrl":null,"url":null,"abstract":"<p><p>Untreated osteochondral defects are a leading cause of osteoarthritis, a condition that places a heavy burden on both patients and orthopedic surgeons. Although tissue engineering has shown promise for creating mechanically similar cartilage-like constructs, their integration with cartilage remains elusive. Therefore, a formulation of biodegradable, biocompatible biomaterial with sufficient mechanical and adhesive properties for cartilage repair is required. To accomplish this, we prepared biocompatible, photo-curable, mechanically robust, and highly adhesive GelMA-glycol chitosan (GelMA-GC) hydrogels. GelMA-GC hydrogels had a modulus of 283 kPa and provided a biocompatible environment (>70% viability of embedded chondrocytes) in long-term culture within a bovine cartilage ring. The adhesive strength of bovine chondrocyte-laden GelMA-GC hydrogel to bovine cartilage increased from 38 to 52 kPa over four weeks of culture. Moreover, intermittent uniaxial mechanical stimulation enhanced the adhesive strength to ∼60 kPa, indicating that the cartilage-hydrogel integration could remain secure and functional under dynamic loading conditions. Furthermore, gene expression data and immunofluorescence staining revealed the capacity of chondrocytes in GelMA-GC hydrogel to synthesize chondrogenic markers (COL2A1 and ACAN), suggesting the potential for tissue regeneration. The promising <i>in vitro</i> results of this work motivate further exploration of the potential of photo-curable GelMA-GC bioadhesive hydrogels for cartilage repair and regeneration.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492648/pdf/","citationCount":"0","resultStr":"{\"title\":\"GelMA-glycol chitosan hydrogels for cartilage regeneration: The role of uniaxial mechanical stimulation in enhancing mechanical, adhesive, and biochemical properties.\",\"authors\":\"Sattwikesh Paul, Karsten Schrobback, Phong Anh Tran, Christoph Meinert, Jordan William Davern, Angus Weekes, Udhaya Nedunchezhiyan, Travis Jacob Klein\",\"doi\":\"10.1063/5.0160472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Untreated osteochondral defects are a leading cause of osteoarthritis, a condition that places a heavy burden on both patients and orthopedic surgeons. Although tissue engineering has shown promise for creating mechanically similar cartilage-like constructs, their integration with cartilage remains elusive. Therefore, a formulation of biodegradable, biocompatible biomaterial with sufficient mechanical and adhesive properties for cartilage repair is required. To accomplish this, we prepared biocompatible, photo-curable, mechanically robust, and highly adhesive GelMA-glycol chitosan (GelMA-GC) hydrogels. GelMA-GC hydrogels had a modulus of 283 kPa and provided a biocompatible environment (>70% viability of embedded chondrocytes) in long-term culture within a bovine cartilage ring. The adhesive strength of bovine chondrocyte-laden GelMA-GC hydrogel to bovine cartilage increased from 38 to 52 kPa over four weeks of culture. Moreover, intermittent uniaxial mechanical stimulation enhanced the adhesive strength to ∼60 kPa, indicating that the cartilage-hydrogel integration could remain secure and functional under dynamic loading conditions. Furthermore, gene expression data and immunofluorescence staining revealed the capacity of chondrocytes in GelMA-GC hydrogel to synthesize chondrogenic markers (COL2A1 and ACAN), suggesting the potential for tissue regeneration. The promising <i>in vitro</i> results of this work motivate further exploration of the potential of photo-curable GelMA-GC bioadhesive hydrogels for cartilage repair and regeneration.</p>\",\"PeriodicalId\":46288,\"journal\":{\"name\":\"APL Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492648/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0160472\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0160472","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
GelMA-glycol chitosan hydrogels for cartilage regeneration: The role of uniaxial mechanical stimulation in enhancing mechanical, adhesive, and biochemical properties.
Untreated osteochondral defects are a leading cause of osteoarthritis, a condition that places a heavy burden on both patients and orthopedic surgeons. Although tissue engineering has shown promise for creating mechanically similar cartilage-like constructs, their integration with cartilage remains elusive. Therefore, a formulation of biodegradable, biocompatible biomaterial with sufficient mechanical and adhesive properties for cartilage repair is required. To accomplish this, we prepared biocompatible, photo-curable, mechanically robust, and highly adhesive GelMA-glycol chitosan (GelMA-GC) hydrogels. GelMA-GC hydrogels had a modulus of 283 kPa and provided a biocompatible environment (>70% viability of embedded chondrocytes) in long-term culture within a bovine cartilage ring. The adhesive strength of bovine chondrocyte-laden GelMA-GC hydrogel to bovine cartilage increased from 38 to 52 kPa over four weeks of culture. Moreover, intermittent uniaxial mechanical stimulation enhanced the adhesive strength to ∼60 kPa, indicating that the cartilage-hydrogel integration could remain secure and functional under dynamic loading conditions. Furthermore, gene expression data and immunofluorescence staining revealed the capacity of chondrocytes in GelMA-GC hydrogel to synthesize chondrogenic markers (COL2A1 and ACAN), suggesting the potential for tissue regeneration. The promising in vitro results of this work motivate further exploration of the potential of photo-curable GelMA-GC bioadhesive hydrogels for cartilage repair and regeneration.
期刊介绍:
APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities.
APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes:
-Biofabrication and Bioprinting
-Biomedical Materials, Sensors, and Imaging
-Engineered Living Systems
-Cell and Tissue Engineering
-Regenerative Medicine
-Molecular, Cell, and Tissue Biomechanics
-Systems Biology and Computational Biology