{"title":"过氧化物酶体 KAT2(3-酮酰-CoA 硫醇酶 2)基因在生姜(Zingiber officinale Rosc.)姜酚的生物合成中起着关键作用。","authors":"S Sreeja, M R Shylaja, P A Nazeem, Deepu Mathew","doi":"10.1007/s13562-022-00825-x","DOIUrl":null,"url":null,"abstract":"<p><p>Ginger is an important spice crop with medicinal values and gingerols are the most abundant pungent polyphenols present in ginger, responsible for most of its pharmacological properties. The present study focuses on the molecular mechanism of gingerol biosynthesis in ginger using transcriptome analysis. Suppression Subtractive Hybridization (SSH) was done in leaf and rhizome tissues using high gingerol-producing ginger somaclone B3 as the tester and parent cultivar Maran as the driver and generated high-quality leaf and rhizome Expressed Sequence Tags (ESTs). The Blast2GO annotations of the ESTs revealed the involvement of leaf ESTs in secondary metabolite production, identifying the peroxisomal KAT2 gene (Leaf EST 9) for the high gingerol production in ginger. Rhizome ESTs mostly coded for DNA metabolic processes and differential genes for high gingerol production were not observed in rhizomes. In the qRT-PCR analysis, somaclone B3 had shown high chalcone synthase (CHS: rate-limiting gene in gingerol biosynthetic pathway) activity (0.54 fold) in the leaves of rhizome sprouts. The presence of a high gingerol gene in leaf ESTs and high expression of CHS in leaves presumed that the site of synthesis of gingerols in ginger is the leaves. A modified pathway for gingerol/polyketide backbone formation has been constructed explaining the involvement of KAT gene isoforms KAT2 and KAT5 in gingerol/flavonoid biosynthesis, specifically the KAT2 gene which is otherwise thought to be involved mainly in β-oxidation. The results of the present investigations have the potential of utilizing KAT/thiolase superfamily enzymes for protein/metabolic pathway engineering in ginger for large-scale production of gingerols.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13562-022-00825-x.</p>","PeriodicalId":16835,"journal":{"name":"Journal of Plant Biochemistry and Biotechnology","volume":" ","pages":"1-16"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838548/pdf/","citationCount":"0","resultStr":"{\"title\":\"Peroxisomal KAT2 (3-ketoacyl-CoA thiolase 2) gene has a key role in gingerol biosynthesis in ginger (<i>Zingiber officinale</i> Rosc.).\",\"authors\":\"S Sreeja, M R Shylaja, P A Nazeem, Deepu Mathew\",\"doi\":\"10.1007/s13562-022-00825-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ginger is an important spice crop with medicinal values and gingerols are the most abundant pungent polyphenols present in ginger, responsible for most of its pharmacological properties. The present study focuses on the molecular mechanism of gingerol biosynthesis in ginger using transcriptome analysis. Suppression Subtractive Hybridization (SSH) was done in leaf and rhizome tissues using high gingerol-producing ginger somaclone B3 as the tester and parent cultivar Maran as the driver and generated high-quality leaf and rhizome Expressed Sequence Tags (ESTs). The Blast2GO annotations of the ESTs revealed the involvement of leaf ESTs in secondary metabolite production, identifying the peroxisomal KAT2 gene (Leaf EST 9) for the high gingerol production in ginger. Rhizome ESTs mostly coded for DNA metabolic processes and differential genes for high gingerol production were not observed in rhizomes. In the qRT-PCR analysis, somaclone B3 had shown high chalcone synthase (CHS: rate-limiting gene in gingerol biosynthetic pathway) activity (0.54 fold) in the leaves of rhizome sprouts. The presence of a high gingerol gene in leaf ESTs and high expression of CHS in leaves presumed that the site of synthesis of gingerols in ginger is the leaves. A modified pathway for gingerol/polyketide backbone formation has been constructed explaining the involvement of KAT gene isoforms KAT2 and KAT5 in gingerol/flavonoid biosynthesis, specifically the KAT2 gene which is otherwise thought to be involved mainly in β-oxidation. The results of the present investigations have the potential of utilizing KAT/thiolase superfamily enzymes for protein/metabolic pathway engineering in ginger for large-scale production of gingerols.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13562-022-00825-x.</p>\",\"PeriodicalId\":16835,\"journal\":{\"name\":\"Journal of Plant Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838548/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Biochemistry and Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-022-00825-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Biochemistry and Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-022-00825-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Peroxisomal KAT2 (3-ketoacyl-CoA thiolase 2) gene has a key role in gingerol biosynthesis in ginger (Zingiber officinale Rosc.).
Ginger is an important spice crop with medicinal values and gingerols are the most abundant pungent polyphenols present in ginger, responsible for most of its pharmacological properties. The present study focuses on the molecular mechanism of gingerol biosynthesis in ginger using transcriptome analysis. Suppression Subtractive Hybridization (SSH) was done in leaf and rhizome tissues using high gingerol-producing ginger somaclone B3 as the tester and parent cultivar Maran as the driver and generated high-quality leaf and rhizome Expressed Sequence Tags (ESTs). The Blast2GO annotations of the ESTs revealed the involvement of leaf ESTs in secondary metabolite production, identifying the peroxisomal KAT2 gene (Leaf EST 9) for the high gingerol production in ginger. Rhizome ESTs mostly coded for DNA metabolic processes and differential genes for high gingerol production were not observed in rhizomes. In the qRT-PCR analysis, somaclone B3 had shown high chalcone synthase (CHS: rate-limiting gene in gingerol biosynthetic pathway) activity (0.54 fold) in the leaves of rhizome sprouts. The presence of a high gingerol gene in leaf ESTs and high expression of CHS in leaves presumed that the site of synthesis of gingerols in ginger is the leaves. A modified pathway for gingerol/polyketide backbone formation has been constructed explaining the involvement of KAT gene isoforms KAT2 and KAT5 in gingerol/flavonoid biosynthesis, specifically the KAT2 gene which is otherwise thought to be involved mainly in β-oxidation. The results of the present investigations have the potential of utilizing KAT/thiolase superfamily enzymes for protein/metabolic pathway engineering in ginger for large-scale production of gingerols.
Supplementary information: The online version contains supplementary material available at 10.1007/s13562-022-00825-x.
期刊介绍:
The Journal publishes review articles, research papers, short communications and commentaries in the areas of plant biochemistry, plant molecular biology, microbial and molecular genetics, DNA finger printing, micropropagation, and plant biotechnology including plant genetic engineering, new molecular tools and techniques, genomics & bioinformatics.