提高ChatGPT-4在OKAP考试中的表现:与ChatGPT-3.5的比较研究。

Sean Teebagy, Lauren Colwell, Emma Wood, Antonio Yaghy, Misha Faustina
{"title":"提高ChatGPT-4在OKAP考试中的表现:与ChatGPT-3.5的比较研究。","authors":"Sean Teebagy,&nbsp;Lauren Colwell,&nbsp;Emma Wood,&nbsp;Antonio Yaghy,&nbsp;Misha Faustina","doi":"10.1055/s-0043-1774399","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b>  This study aims to evaluate the performance of ChatGPT-4, an advanced artificial intelligence (AI) language model, on the Ophthalmology Knowledge Assessment Program (OKAP) examination compared to its predecessor, ChatGPT-3.5. <b>Methods:</b>  Both models were tested on 180 OKAP practice questions covering various ophthalmology subject categories. <b>Results:</b>  ChatGPT-4 significantly outperformed ChatGPT-3.5 (81% vs. 57%; <i>p</i> <0.001), indicating improvements in medical knowledge assessment. <b>Discussion:</b>  The superior performance of ChatGPT-4 suggests potential applicability in ophthalmologic education and clinical decision support systems. Future research should focus on refining AI models, ensuring a balanced representation of fundamental and specialized knowledge, and determining the optimal method of integrating AI into medical education and practice.</p>","PeriodicalId":73579,"journal":{"name":"Journal of academic ophthalmology (2017)","volume":"15 2","pages":"e184-e187"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e6/e4/10-1055-s-0043-1774399.PMC10495224.pdf","citationCount":"2","resultStr":"{\"title\":\"Improved Performance of ChatGPT-4 on the OKAP Examination: A Comparative Study with ChatGPT-3.5.\",\"authors\":\"Sean Teebagy,&nbsp;Lauren Colwell,&nbsp;Emma Wood,&nbsp;Antonio Yaghy,&nbsp;Misha Faustina\",\"doi\":\"10.1055/s-0043-1774399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Introduction:</b>  This study aims to evaluate the performance of ChatGPT-4, an advanced artificial intelligence (AI) language model, on the Ophthalmology Knowledge Assessment Program (OKAP) examination compared to its predecessor, ChatGPT-3.5. <b>Methods:</b>  Both models were tested on 180 OKAP practice questions covering various ophthalmology subject categories. <b>Results:</b>  ChatGPT-4 significantly outperformed ChatGPT-3.5 (81% vs. 57%; <i>p</i> <0.001), indicating improvements in medical knowledge assessment. <b>Discussion:</b>  The superior performance of ChatGPT-4 suggests potential applicability in ophthalmologic education and clinical decision support systems. Future research should focus on refining AI models, ensuring a balanced representation of fundamental and specialized knowledge, and determining the optimal method of integrating AI into medical education and practice.</p>\",\"PeriodicalId\":73579,\"journal\":{\"name\":\"Journal of academic ophthalmology (2017)\",\"volume\":\"15 2\",\"pages\":\"e184-e187\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e6/e4/10-1055-s-0043-1774399.PMC10495224.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of academic ophthalmology (2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0043-1774399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of academic ophthalmology (2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0043-1774399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究旨在评估先进的人工智能(AI)语言模型ChatGPT-4在眼科知识评估计划(OKAP)考试中的表现,并与其前身ChatGPT-3.5进行比较。方法:采用180道OKAP实践题对两种模型进行检验。结果:ChatGPT-4显著优于ChatGPT-3.5 (81% vs. 57%;p讨论:ChatGPT-4的优越性能表明其在眼科教育和临床决策支持系统中的潜在适用性。未来的研究应侧重于完善人工智能模型,确保基础知识和专业知识的平衡代表,并确定将人工智能融入医学教育和实践的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Performance of ChatGPT-4 on the OKAP Examination: A Comparative Study with ChatGPT-3.5.

Introduction:  This study aims to evaluate the performance of ChatGPT-4, an advanced artificial intelligence (AI) language model, on the Ophthalmology Knowledge Assessment Program (OKAP) examination compared to its predecessor, ChatGPT-3.5. Methods:  Both models were tested on 180 OKAP practice questions covering various ophthalmology subject categories. Results:  ChatGPT-4 significantly outperformed ChatGPT-3.5 (81% vs. 57%; p <0.001), indicating improvements in medical knowledge assessment. Discussion:  The superior performance of ChatGPT-4 suggests potential applicability in ophthalmologic education and clinical decision support systems. Future research should focus on refining AI models, ensuring a balanced representation of fundamental and specialized knowledge, and determining the optimal method of integrating AI into medical education and practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Erratum: The Big Data Gap: Asymmetric Information in the Ophthalmology Residency Match Process and the Argument for Transparent Residency Data. Self-Reported Perceptions of Preparedness among Incoming Ophthalmology Residents. The Matthew Effect: Prevalence of Doctor and Physician Parents among Ophthalmology Applicants. Gender Representation on North American Ophthalmology Societies' Governance Boards. The Big Data Gap: Asymmetric Information in the Ophthalmology Residency Match Process and the Argument for Transparent Residency Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1