{"title":"频繁模式挖掘概述。","authors":"Jurg Ott, Taesung Park","doi":"10.5808/gi.22074","DOIUrl":null,"url":null,"abstract":"<p><p>Various methods of frequent pattern mining have been applied to genetic problems, specifically, to the combined association of two genotypes (a genotype pattern, or diplotype) at different DNA variants with disease. These methods have the ability to come up with a selection of genotype patterns that are more common in affected than unaffected individuals, and the assessment of statistical significance for these selected patterns poses some unique problems, which are briefly outlined here.</p>","PeriodicalId":36591,"journal":{"name":"Genomics and Informatics","volume":"20 4","pages":"e39"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847378/pdf/","citationCount":"3","resultStr":"{\"title\":\"Overview of frequent pattern mining.\",\"authors\":\"Jurg Ott, Taesung Park\",\"doi\":\"10.5808/gi.22074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various methods of frequent pattern mining have been applied to genetic problems, specifically, to the combined association of two genotypes (a genotype pattern, or diplotype) at different DNA variants with disease. These methods have the ability to come up with a selection of genotype patterns that are more common in affected than unaffected individuals, and the assessment of statistical significance for these selected patterns poses some unique problems, which are briefly outlined here.</p>\",\"PeriodicalId\":36591,\"journal\":{\"name\":\"Genomics and Informatics\",\"volume\":\"20 4\",\"pages\":\"e39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847378/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5808/gi.22074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5808/gi.22074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Various methods of frequent pattern mining have been applied to genetic problems, specifically, to the combined association of two genotypes (a genotype pattern, or diplotype) at different DNA variants with disease. These methods have the ability to come up with a selection of genotype patterns that are more common in affected than unaffected individuals, and the assessment of statistical significance for these selected patterns poses some unique problems, which are briefly outlined here.