一种改进的基于特征子集的最大相关最小冗余方法。

IF 2.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Supercomputing Pub Date : 2023-01-01 DOI:10.1007/s11227-022-04763-2
Shanshan Xie, Yan Zhang, Danjv Lv, Xu Chen, Jing Lu, Jiang Liu
{"title":"一种改进的基于特征子集的最大相关最小冗余方法。","authors":"Shanshan Xie,&nbsp;Yan Zhang,&nbsp;Danjv Lv,&nbsp;Xu Chen,&nbsp;Jing Lu,&nbsp;Jiang Liu","doi":"10.1007/s11227-022-04763-2","DOIUrl":null,"url":null,"abstract":"<p><p>Feature selection plays a very significant role for the success of pattern recognition and data mining. Based on the maximal relevance and minimal redundancy (mRMR) method, combined with feature subset, this paper proposes an improved maximal relevance and minimal redundancy (ImRMR) feature selection method based on feature subset. In ImRMR, the Pearson correlation coefficient and mutual information are first used to measure the relevance of a single feature to the sample category, and a factor is introduced to adjust the weights of the two measurement criteria. And an equal grouping method is exploited to generate candidate feature subsets according to the ranking features. Then, the relevance and redundancy of candidate feature subsets are calculated and the ordered sequence of these feature subsets is gained by incremental search method. Finally, the final optimal feature subset is obtained from these feature subsets by combining the sequence forward search method and the classification learning algorithm. Experiments are conducted on seven datasets. The results show that ImRMR can effectively remove irrelevant and redundant features, which can not only reduce the dimension of sample features and time of model training and prediction, but also improve the classification performance.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"79 3","pages":"3157-3180"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424812/pdf/","citationCount":"4","resultStr":"{\"title\":\"A new improved maximal relevance and minimal redundancy method based on feature subset.\",\"authors\":\"Shanshan Xie,&nbsp;Yan Zhang,&nbsp;Danjv Lv,&nbsp;Xu Chen,&nbsp;Jing Lu,&nbsp;Jiang Liu\",\"doi\":\"10.1007/s11227-022-04763-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Feature selection plays a very significant role for the success of pattern recognition and data mining. Based on the maximal relevance and minimal redundancy (mRMR) method, combined with feature subset, this paper proposes an improved maximal relevance and minimal redundancy (ImRMR) feature selection method based on feature subset. In ImRMR, the Pearson correlation coefficient and mutual information are first used to measure the relevance of a single feature to the sample category, and a factor is introduced to adjust the weights of the two measurement criteria. And an equal grouping method is exploited to generate candidate feature subsets according to the ranking features. Then, the relevance and redundancy of candidate feature subsets are calculated and the ordered sequence of these feature subsets is gained by incremental search method. Finally, the final optimal feature subset is obtained from these feature subsets by combining the sequence forward search method and the classification learning algorithm. Experiments are conducted on seven datasets. The results show that ImRMR can effectively remove irrelevant and redundant features, which can not only reduce the dimension of sample features and time of model training and prediction, but also improve the classification performance.</p>\",\"PeriodicalId\":50034,\"journal\":{\"name\":\"Journal of Supercomputing\",\"volume\":\"79 3\",\"pages\":\"3157-3180\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424812/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-022-04763-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-022-04763-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 4

摘要

特征选择对模式识别和数据挖掘的成功与否起着至关重要的作用。在最大相关最小冗余(mRMR)方法的基础上,结合特征子集,提出了一种改进的基于特征子集的最大相关最小冗余(ImRMR)特征选择方法。在ImRMR中,首先使用Pearson相关系数和互信息来度量单个特征与样本类别的相关性,并引入一个因子来调整两个度量标准的权重。利用等量分组方法,根据排序特征生成候选特征子集。然后,计算候选特征子集的相关性和冗余度,并通过增量搜索法获得候选特征子集的有序序列;最后,结合序列前向搜索方法和分类学习算法,从这些特征子集中得到最终的最优特征子集。实验在7个数据集上进行。结果表明,ImRMR可以有效地去除不相关和冗余的特征,不仅可以降低样本特征的维数,减少模型训练和预测的时间,还可以提高分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new improved maximal relevance and minimal redundancy method based on feature subset.

Feature selection plays a very significant role for the success of pattern recognition and data mining. Based on the maximal relevance and minimal redundancy (mRMR) method, combined with feature subset, this paper proposes an improved maximal relevance and minimal redundancy (ImRMR) feature selection method based on feature subset. In ImRMR, the Pearson correlation coefficient and mutual information are first used to measure the relevance of a single feature to the sample category, and a factor is introduced to adjust the weights of the two measurement criteria. And an equal grouping method is exploited to generate candidate feature subsets according to the ranking features. Then, the relevance and redundancy of candidate feature subsets are calculated and the ordered sequence of these feature subsets is gained by incremental search method. Finally, the final optimal feature subset is obtained from these feature subsets by combining the sequence forward search method and the classification learning algorithm. Experiments are conducted on seven datasets. The results show that ImRMR can effectively remove irrelevant and redundant features, which can not only reduce the dimension of sample features and time of model training and prediction, but also improve the classification performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Supercomputing
Journal of Supercomputing 工程技术-工程:电子与电气
CiteScore
6.30
自引率
12.10%
发文量
734
审稿时长
13 months
期刊介绍: The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs. Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.
期刊最新文献
Topic sentiment analysis based on deep neural network using document embedding technique. A Fechner multiscale local descriptor for face recognition. Data quality model for assessing public COVID-19 big datasets. BTDA: Two-factor dynamic identity authentication scheme for data trading based on alliance chain. Driving behavior analysis and classification by vehicle OBD data using machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1