{"title":"融合套索信号逼近器路径算法及其在国内COVID-19传播中的应用","authors":"Won Son, Johan Lim, Donghyeon Yu","doi":"10.1111/insr.12521","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find sparse signal blocks. Several path algorithms have been developed to obtain the whole solution path of the FLSA. However, it is known that the FLSA has model selection inconsistency when the underlying signals have a stair-case block, where three consecutive signal blocks are either strictly increasing or decreasing. Modified path algorithms for the FLSA have been proposed to guarantee model selection consistency regardless of the stair-case block. In this paper, we provide a comprehensive review of the path algorithms for the FLSA and prove the properties of the recently modified path algorithms' hitting times. Specifically, we reinterpret the modified path algorithm as the path algorithm for local FLSA problems and reveal the condition that the hitting time for the fusion of the modified path algorithm is not monotone in a tuning parameter. To recover the monotonicity of the solution path, we propose a pathwise adaptive FLSA having monotonicity with similar performance as the modified solution path algorithm. Finally, we apply the proposed method to the number of daily-confirmed cases of COVID-19 in Korea to identify the change points of its spread.</p>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874640/pdf/INSR-9999-0.pdf","citationCount":"1","resultStr":"{\"title\":\"Path algorithms for fused lasso signal approximator with application to COVID-19 spread in Korea\",\"authors\":\"Won Son, Johan Lim, Donghyeon Yu\",\"doi\":\"10.1111/insr.12521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find sparse signal blocks. Several path algorithms have been developed to obtain the whole solution path of the FLSA. However, it is known that the FLSA has model selection inconsistency when the underlying signals have a stair-case block, where three consecutive signal blocks are either strictly increasing or decreasing. Modified path algorithms for the FLSA have been proposed to guarantee model selection consistency regardless of the stair-case block. In this paper, we provide a comprehensive review of the path algorithms for the FLSA and prove the properties of the recently modified path algorithms' hitting times. Specifically, we reinterpret the modified path algorithm as the path algorithm for local FLSA problems and reveal the condition that the hitting time for the fusion of the modified path algorithm is not monotone in a tuning parameter. To recover the monotonicity of the solution path, we propose a pathwise adaptive FLSA having monotonicity with similar performance as the modified solution path algorithm. Finally, we apply the proposed method to the number of daily-confirmed cases of COVID-19 in Korea to identify the change points of its spread.</p>\\n </div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874640/pdf/INSR-9999-0.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/insr.12521\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12521","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Path algorithms for fused lasso signal approximator with application to COVID-19 spread in Korea
The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find sparse signal blocks. Several path algorithms have been developed to obtain the whole solution path of the FLSA. However, it is known that the FLSA has model selection inconsistency when the underlying signals have a stair-case block, where three consecutive signal blocks are either strictly increasing or decreasing. Modified path algorithms for the FLSA have been proposed to guarantee model selection consistency regardless of the stair-case block. In this paper, we provide a comprehensive review of the path algorithms for the FLSA and prove the properties of the recently modified path algorithms' hitting times. Specifically, we reinterpret the modified path algorithm as the path algorithm for local FLSA problems and reveal the condition that the hitting time for the fusion of the modified path algorithm is not monotone in a tuning parameter. To recover the monotonicity of the solution path, we propose a pathwise adaptive FLSA having monotonicity with similar performance as the modified solution path algorithm. Finally, we apply the proposed method to the number of daily-confirmed cases of COVID-19 in Korea to identify the change points of its spread.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.