{"title":"嘌呤能受体P2X7激活NOX2/JNK信号传导,参与多囊卵巢综合征颗粒细胞炎症和凋亡。","authors":"Chuan Shen, Yongmei Jiang, Jia Lin, Yibei He, Yue Liu, Dingzhi Fang","doi":"10.1007/s10863-023-09979-2","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence shows that polycystic ovary syndrome (PCOS) is often accompanied by an inflammatory response, hence, appropriately managing granulosa cell inflammation is critical to regaining ovarian function in PCOS. In this study, the differential levels of purinergic receptor P2X7 between the control and PCOS samples in the dataset GSE34526 were assessed, then PCOS mouse models were established. Following evaluating the fluctuations in hormone levels, inflammatory cytokines, and P2X7, mice received treatment with the P2X7 antagonist A740003. Its effects on hormones, inflammation, apoptosis, and NOX2 signaling in mice were examined. Afterward, primary mouse granulosa cells were isolated, and the mediating role of NOX2 signaling in the P2X7 regulatory pathway was confirmed by transfection of NOX2 overexpression plasmids. The results demonstrated that P2X7 was significantly elevated in the PCOS samples in the dataset. Compared with the control group, PCOS mice had significant differences in the follicle-stimulating hormone, luteinizing hormone, testosterone, anti-Müllerian hormone, inflammatory factors, and P2X7. Treatment with A740003 partially restored these parameter levels, including NOX2 signaling. Based on in vitro experiments on primary mouse granulosa cells, the above findings were re-verified, and the overexpression of NOX2 could reverse the regulatory function of P2X7. The present study highlights that P2X7 level increases in PCOS, and inhibition of P2X7 can reduce disease symptoms. It is involved in inflammation and apoptosis in granulosa cells through NOX2/JNK signaling.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Purinergic receptor P2X7 activates NOX2/JNK signaling to participate in granulosa cell inflammation and apoptosis in polycystic ovary syndrome.\",\"authors\":\"Chuan Shen, Yongmei Jiang, Jia Lin, Yibei He, Yue Liu, Dingzhi Fang\",\"doi\":\"10.1007/s10863-023-09979-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing evidence shows that polycystic ovary syndrome (PCOS) is often accompanied by an inflammatory response, hence, appropriately managing granulosa cell inflammation is critical to regaining ovarian function in PCOS. In this study, the differential levels of purinergic receptor P2X7 between the control and PCOS samples in the dataset GSE34526 were assessed, then PCOS mouse models were established. Following evaluating the fluctuations in hormone levels, inflammatory cytokines, and P2X7, mice received treatment with the P2X7 antagonist A740003. Its effects on hormones, inflammation, apoptosis, and NOX2 signaling in mice were examined. Afterward, primary mouse granulosa cells were isolated, and the mediating role of NOX2 signaling in the P2X7 regulatory pathway was confirmed by transfection of NOX2 overexpression plasmids. The results demonstrated that P2X7 was significantly elevated in the PCOS samples in the dataset. Compared with the control group, PCOS mice had significant differences in the follicle-stimulating hormone, luteinizing hormone, testosterone, anti-Müllerian hormone, inflammatory factors, and P2X7. Treatment with A740003 partially restored these parameter levels, including NOX2 signaling. Based on in vitro experiments on primary mouse granulosa cells, the above findings were re-verified, and the overexpression of NOX2 could reverse the regulatory function of P2X7. The present study highlights that P2X7 level increases in PCOS, and inhibition of P2X7 can reduce disease symptoms. It is involved in inflammation and apoptosis in granulosa cells through NOX2/JNK signaling.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10863-023-09979-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-023-09979-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Purinergic receptor P2X7 activates NOX2/JNK signaling to participate in granulosa cell inflammation and apoptosis in polycystic ovary syndrome.
Increasing evidence shows that polycystic ovary syndrome (PCOS) is often accompanied by an inflammatory response, hence, appropriately managing granulosa cell inflammation is critical to regaining ovarian function in PCOS. In this study, the differential levels of purinergic receptor P2X7 between the control and PCOS samples in the dataset GSE34526 were assessed, then PCOS mouse models were established. Following evaluating the fluctuations in hormone levels, inflammatory cytokines, and P2X7, mice received treatment with the P2X7 antagonist A740003. Its effects on hormones, inflammation, apoptosis, and NOX2 signaling in mice were examined. Afterward, primary mouse granulosa cells were isolated, and the mediating role of NOX2 signaling in the P2X7 regulatory pathway was confirmed by transfection of NOX2 overexpression plasmids. The results demonstrated that P2X7 was significantly elevated in the PCOS samples in the dataset. Compared with the control group, PCOS mice had significant differences in the follicle-stimulating hormone, luteinizing hormone, testosterone, anti-Müllerian hormone, inflammatory factors, and P2X7. Treatment with A740003 partially restored these parameter levels, including NOX2 signaling. Based on in vitro experiments on primary mouse granulosa cells, the above findings were re-verified, and the overexpression of NOX2 could reverse the regulatory function of P2X7. The present study highlights that P2X7 level increases in PCOS, and inhibition of P2X7 can reduce disease symptoms. It is involved in inflammation and apoptosis in granulosa cells through NOX2/JNK signaling.