人参皂苷Rb1通过调节腺苷激活的蛋白激酶/Nrf2/血红素加氧酶-1信号通路,减轻db/db小鼠慢性间歇性缺氧诱导的糖尿病心肌病。

Liu Bingbing, L I Jieru, S I Jianchao, Chen Qi, Yang Shengchang, J I Ensheng
{"title":"人参皂苷Rb1通过调节腺苷激活的蛋白激酶/Nrf2/血红素加氧酶-1信号通路,减轻db/db小鼠慢性间歇性缺氧诱导的糖尿病心肌病。","authors":"Liu Bingbing,&nbsp;L I Jieru,&nbsp;S I Jianchao,&nbsp;Chen Qi,&nbsp;Yang Shengchang,&nbsp;J I Ensheng","doi":"10.19852/j.cnki.jtcm.20221206.004","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To examine the protective effect of ginsenoside Rb1 (Rb1), the main component of Renshen (), on cardiomyopathy in db/db mice exposed to chronic intermittent hypoxia (CIH) and explore the potential underlying mechanism of Rb1 in treating diabetic cardiomyopathy (DCM).</p><p><strong>Methods: </strong>The db/db mice were randomly separated into five groups: normal control group, model group, Rb1 20 mg/kg group, Rb1 40 mg/kg group, and glucagon-like peptide-1 (GLP-1) group. Mice were exposed to air-condition or CIH for 8 weeks, and Rb1 and GLP-1 were administrated before CIH exposure every day. Oral glucose tolerance test (OGTT), intraperitoneal insulin tolerance test (IPITT), total cholesterol (TC), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C) were detected to evaluate glycolipid metabolism. The level of insulin was detected by a mouse enzyme-linked immunosorbent assay (ELISA). Cardiac function was detected by echocardiography, and myocardial pathology was observed by hematoxylin-eosin and Masson staining. The expression of collagen Ⅰ and collagen Ⅲ was detected by immunohistochemistry. Adenosine monophosphate-activated protein kinase (AMPK)/Nrf2/heme oxygenase-1 (HO-1) signaling pathway was detected by Western blot and immunofluorescence.</p><p><strong>Results: </strong>Rb1 treatment could improve glucose tolerance and the level of cardiac function indexes, and inhibit the level of oxidative stress indexes and the expression of collagen Ⅰ and collagen Ⅲ. Moreover, Rb1 treatment enhanced AMPK phosphorylation and increased Nrf2 and HO-1 expression.</p><p><strong>Conclusion: </strong>Rb1 treatment alleviated CIH-induced diabetic cardiomyopathy and glycolipid metabolism disorders in db/db mice by inhibiting oxidative stress and regulating the AMPK/Nrf2/HO-1 signaling pathway.</p>","PeriodicalId":17450,"journal":{"name":"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan","volume":"43 5","pages":"906-914"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465847/pdf/JTCM-43-5-906.pdf","citationCount":"0","resultStr":"{\"title\":\"Ginsenoside Rb1 alleviates chronic intermittent hypoxia-induced diabetic cardiomyopathy in db/db mice by regulating the adenosine monophosphate-activated protein kinase/Nrf2/heme oxygenase-1 signaling pathway.\",\"authors\":\"Liu Bingbing,&nbsp;L I Jieru,&nbsp;S I Jianchao,&nbsp;Chen Qi,&nbsp;Yang Shengchang,&nbsp;J I Ensheng\",\"doi\":\"10.19852/j.cnki.jtcm.20221206.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To examine the protective effect of ginsenoside Rb1 (Rb1), the main component of Renshen (), on cardiomyopathy in db/db mice exposed to chronic intermittent hypoxia (CIH) and explore the potential underlying mechanism of Rb1 in treating diabetic cardiomyopathy (DCM).</p><p><strong>Methods: </strong>The db/db mice were randomly separated into five groups: normal control group, model group, Rb1 20 mg/kg group, Rb1 40 mg/kg group, and glucagon-like peptide-1 (GLP-1) group. Mice were exposed to air-condition or CIH for 8 weeks, and Rb1 and GLP-1 were administrated before CIH exposure every day. Oral glucose tolerance test (OGTT), intraperitoneal insulin tolerance test (IPITT), total cholesterol (TC), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C) were detected to evaluate glycolipid metabolism. The level of insulin was detected by a mouse enzyme-linked immunosorbent assay (ELISA). Cardiac function was detected by echocardiography, and myocardial pathology was observed by hematoxylin-eosin and Masson staining. The expression of collagen Ⅰ and collagen Ⅲ was detected by immunohistochemistry. Adenosine monophosphate-activated protein kinase (AMPK)/Nrf2/heme oxygenase-1 (HO-1) signaling pathway was detected by Western blot and immunofluorescence.</p><p><strong>Results: </strong>Rb1 treatment could improve glucose tolerance and the level of cardiac function indexes, and inhibit the level of oxidative stress indexes and the expression of collagen Ⅰ and collagen Ⅲ. Moreover, Rb1 treatment enhanced AMPK phosphorylation and increased Nrf2 and HO-1 expression.</p><p><strong>Conclusion: </strong>Rb1 treatment alleviated CIH-induced diabetic cardiomyopathy and glycolipid metabolism disorders in db/db mice by inhibiting oxidative stress and regulating the AMPK/Nrf2/HO-1 signaling pathway.</p>\",\"PeriodicalId\":17450,\"journal\":{\"name\":\"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan\",\"volume\":\"43 5\",\"pages\":\"906-914\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465847/pdf/JTCM-43-5-906.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19852/j.cnki.jtcm.20221206.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19852/j.cnki.jtcm.20221206.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:观察人参总皂苷Rb1(Rb1)对慢性间歇性缺氧(CIH)db/db小鼠心肌病的保护作用,探讨Rb1治疗糖尿病性心肌病(DCM)的潜在机制,Rb1 40mg/kg组和胰高血糖素样肽-1(GLP-1)组。小鼠暴露于空调或CIH 8周,并在每天暴露于CIH之前给予Rb1和GLP-1。检测口服葡萄糖耐量试验(OGTT)、腹膜内胰岛素耐量测试(IPITT)、总胆固醇(TC)、甘油三酯(TG)和高密度脂蛋白胆固醇(HDL-C)以评估糖脂代谢。通过小鼠酶联免疫吸附试验(ELISA)检测胰岛素水平。超声心动图检测心功能,苏木精-伊红和Masson染色观察心肌病理。免疫组化法检测Ⅰ型胶原和Ⅲ型胶原的表达。用蛋白质印迹和免疫荧光法检测腺苷一磷酸激活蛋白激酶(AMPK)/Nrf2/血红素加氧酶-1(HO-1)信号通路。结果:Rb1治疗可改善糖耐量和心功能指标,抑制氧化应激指标和Ⅰ、Ⅲ型胶原的表达。此外,Rb1处理增强了AMPK磷酸化,并增加了Nrf2和HO-1的表达。结论:Rb1治疗通过抑制氧化应激和调节AMPK/Nrf2/HO-1信号通路,减轻了CIH诱导的糖尿病心肌病和db/db小鼠糖脂代谢紊乱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ginsenoside Rb1 alleviates chronic intermittent hypoxia-induced diabetic cardiomyopathy in db/db mice by regulating the adenosine monophosphate-activated protein kinase/Nrf2/heme oxygenase-1 signaling pathway.

Objective: To examine the protective effect of ginsenoside Rb1 (Rb1), the main component of Renshen (), on cardiomyopathy in db/db mice exposed to chronic intermittent hypoxia (CIH) and explore the potential underlying mechanism of Rb1 in treating diabetic cardiomyopathy (DCM).

Methods: The db/db mice were randomly separated into five groups: normal control group, model group, Rb1 20 mg/kg group, Rb1 40 mg/kg group, and glucagon-like peptide-1 (GLP-1) group. Mice were exposed to air-condition or CIH for 8 weeks, and Rb1 and GLP-1 were administrated before CIH exposure every day. Oral glucose tolerance test (OGTT), intraperitoneal insulin tolerance test (IPITT), total cholesterol (TC), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C) were detected to evaluate glycolipid metabolism. The level of insulin was detected by a mouse enzyme-linked immunosorbent assay (ELISA). Cardiac function was detected by echocardiography, and myocardial pathology was observed by hematoxylin-eosin and Masson staining. The expression of collagen Ⅰ and collagen Ⅲ was detected by immunohistochemistry. Adenosine monophosphate-activated protein kinase (AMPK)/Nrf2/heme oxygenase-1 (HO-1) signaling pathway was detected by Western blot and immunofluorescence.

Results: Rb1 treatment could improve glucose tolerance and the level of cardiac function indexes, and inhibit the level of oxidative stress indexes and the expression of collagen Ⅰ and collagen Ⅲ. Moreover, Rb1 treatment enhanced AMPK phosphorylation and increased Nrf2 and HO-1 expression.

Conclusion: Rb1 treatment alleviated CIH-induced diabetic cardiomyopathy and glycolipid metabolism disorders in db/db mice by inhibiting oxidative stress and regulating the AMPK/Nrf2/HO-1 signaling pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effectiveness and safety of Pingxiao capsule as adjuvant therapy in treatment of breast cancer: a systematic review and Meta-analysis. Zhenxin Anshen formula ameliorates atopic der-matitis-like skin dysfunction in mice and regulation of transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 in Neural pathways. Electroacupuncture stimulating Zhongji (CV3), Guanyuan (CV4), and bilateral Dahe (KI12) attenuates inflammation in rats with chronic nonbacterial prostatitis induced by estradiol through inhibiting toll-like receptor 4 pathway. Guilingji capsule for Alzheimer's disease: secondary analysis of a randomized non-inferiority controlled trial. Efficacy of catgut embedding in Baihui (GV20) and Feishu (BL13) and Pishu (BL20) on lung tissue, brain tissue and blood related indexes in rats with allergic rhinitis of lung deficiency type.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1