2D碳化钒mx酶缓解ros介导的炎症和神经退行性疾病。

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2021-04-13 DOI:10.1038/s41467-021-22278-x
Wei Feng, Xiuguo Han, Hui Hu, Meiqi Chang, Li Ding, Huijing Xiang, Yu Chen, Yuehua Li
{"title":"2D碳化钒mx酶缓解ros介导的炎症和神经退行性疾病。","authors":"Wei Feng,&nbsp;Xiuguo Han,&nbsp;Hui Hu,&nbsp;Meiqi Chang,&nbsp;Li Ding,&nbsp;Huijing Xiang,&nbsp;Yu Chen,&nbsp;Yuehua Li","doi":"10.1038/s41467-021-22278-x","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive oxygen species (ROS) are generated and consumed in living organism for normal metabolism. Paradoxically, the overproduction and/or mismanagement of ROS have been involved in pathogenesis and progression of various human diseases. Here, we reported a two-dimensional (2D) vanadium carbide (V<sub>2</sub>C) MXene nanoenzyme (MXenzyme) that can mimic up to six naturally-occurring enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPx), thiol peroxidase (TPx) and haloperoxidase (HPO). Based on these enzyme-mimicking properties, the constructed 2D V<sub>2</sub>C MXenzyme not only possesses high biocompatibility but also exhibits robust in vitro cytoprotection against oxidative stress. Importantly, 2D V<sub>2</sub>C MXenzyme rebuilds the redox homeostasis without perturbing the endogenous antioxidant status and relieves ROS-induced damage with benign in vivo therapeutic effects, as demonstrated in both inflammation and neurodegeneration animal models. These findings open an avenue to enable the use of MXenzyme as a remedial nanoplatform to treat ROS-mediated inflammatory and neurodegenerative diseases.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"12 1","pages":"2203"},"PeriodicalIF":14.7000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41467-021-22278-x","citationCount":"156","resultStr":"{\"title\":\"2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases.\",\"authors\":\"Wei Feng,&nbsp;Xiuguo Han,&nbsp;Hui Hu,&nbsp;Meiqi Chang,&nbsp;Li Ding,&nbsp;Huijing Xiang,&nbsp;Yu Chen,&nbsp;Yuehua Li\",\"doi\":\"10.1038/s41467-021-22278-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reactive oxygen species (ROS) are generated and consumed in living organism for normal metabolism. Paradoxically, the overproduction and/or mismanagement of ROS have been involved in pathogenesis and progression of various human diseases. Here, we reported a two-dimensional (2D) vanadium carbide (V<sub>2</sub>C) MXene nanoenzyme (MXenzyme) that can mimic up to six naturally-occurring enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPx), thiol peroxidase (TPx) and haloperoxidase (HPO). Based on these enzyme-mimicking properties, the constructed 2D V<sub>2</sub>C MXenzyme not only possesses high biocompatibility but also exhibits robust in vitro cytoprotection against oxidative stress. Importantly, 2D V<sub>2</sub>C MXenzyme rebuilds the redox homeostasis without perturbing the endogenous antioxidant status and relieves ROS-induced damage with benign in vivo therapeutic effects, as demonstrated in both inflammation and neurodegeneration animal models. These findings open an avenue to enable the use of MXenzyme as a remedial nanoplatform to treat ROS-mediated inflammatory and neurodegenerative diseases.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"12 1\",\"pages\":\"2203\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/s41467-021-22278-x\",\"citationCount\":\"156\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-021-22278-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-021-22278-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 156

摘要

活性氧(Reactive oxygen species, ROS)在生物体中产生和消耗以进行正常的代谢。矛盾的是,活性氧的过量产生和/或管理不当参与了各种人类疾病的发病和进展。在这里,我们报道了一种二维(2D)碳化钒(V2C) MXene纳米酶(mx酶),它可以模拟多达六种天然存在的酶,包括超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、谷胱甘肽过氧化物酶(GPx)、硫醇过氧化物酶(TPx)和卤素过氧化物酶(HPO)。基于这些酶模拟特性,构建的2D V2C mx酶不仅具有较高的生物相容性,而且在体外对氧化应激具有很强的细胞保护作用。重要的是,2D V2C mx酶在不干扰内源性抗氧化状态的情况下重建氧化还原稳态,减轻ros诱导的损伤,具有良好的体内治疗效果,这在炎症和神经退行性动物模型中都得到了证明。这些发现为使用mx酶作为治疗ros介导的炎症和神经退行性疾病的补救纳米平台开辟了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases.

Reactive oxygen species (ROS) are generated and consumed in living organism for normal metabolism. Paradoxically, the overproduction and/or mismanagement of ROS have been involved in pathogenesis and progression of various human diseases. Here, we reported a two-dimensional (2D) vanadium carbide (V2C) MXene nanoenzyme (MXenzyme) that can mimic up to six naturally-occurring enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPx), thiol peroxidase (TPx) and haloperoxidase (HPO). Based on these enzyme-mimicking properties, the constructed 2D V2C MXenzyme not only possesses high biocompatibility but also exhibits robust in vitro cytoprotection against oxidative stress. Importantly, 2D V2C MXenzyme rebuilds the redox homeostasis without perturbing the endogenous antioxidant status and relieves ROS-induced damage with benign in vivo therapeutic effects, as demonstrated in both inflammation and neurodegeneration animal models. These findings open an avenue to enable the use of MXenzyme as a remedial nanoplatform to treat ROS-mediated inflammatory and neurodegenerative diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Author Correction: CryoET reveals actin filaments within platelet microtubules Plasma membrane remodeling determines adipocyte expansion and mechanical adaptability Measuring competing outcomes of a single-molecule reaction reveals classical Arrhenius chemical kinetics Late-stage (radio)fluorination of alkyl phosphonates via electrophilic activation A massively parallel reporter assay library to screen short synthetic promoters in mammalian cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1