Zhongjun Liu, Siwei Li, Shuaimei Xu, Nu Er Bi Ya A Bu Du Xi Ku, Jun Wen, Xiongqun Zeng, Xiaoqing Shen, Pingping Xu
{"title":"Hsa_Circ_0005044通过调节miR-296-3p/FOSL1促进牙髓干细胞成骨/成牙分化","authors":"Zhongjun Liu, Siwei Li, Shuaimei Xu, Nu Er Bi Ya A Bu Du Xi Ku, Jun Wen, Xiongqun Zeng, Xiaoqing Shen, Pingping Xu","doi":"10.1089/dna.2022.0394","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are a form of RNAs that lack coding potential. The role of such circRNAs in dental pulp stem cell (DPSC) osteo/odontogenic differentiation remains to be determined. In this study, circRNA expression profiles in DPSC osteo/odontogenic differentiation process were analyzed by RNA-seq. qRT-PCR was used to confirm the differential expression of <i>circ_0005044</i>, <i>miR-296-3p</i>, and <i>FOSL1</i> in DPSC osteogenic differentiation process. <i>Circ_0005044</i>, <i>miR-296-3p</i>, and <i>FOSL1</i> were knocked down or overexpressed. Osteoblastic activity and associated mineral activity were monitored via alkaline phosphatase (<i>ALP</i>) and alizarin red S (ARS) staining. Interactions between <i>miR-296-3p</i>, <i>circ_0005044</i>, and <i>FOSL1</i> were assessed through luciferase reporter assays. Finally, an <i>in vivo</i> system was used to confirm the relevance of <i>circ_0005044</i> to osteoblastic differentiation. As results, we detected significant <i>circ_0005044</i> and <i>FOSL1</i> upregulation in DPSC osteo/odontogenic differentiation process, as well as concomitant <i>miR-296-3p</i> downregulation. When knocking down <i>circ_0005044</i> or overexpressed <i>miR-296-3p</i>, this significantly inhibited osteogenesis. Luciferase reporter assay confirmed that <i>miR-296-3p</i> was capable of binding to conserved sequences in the wild-type forms of both the <i>circ_0005044</i> and <i>FOSL1</i>. Furthermore, knocking down <i>circ_0005044 in vivo</i> significantly attenuated bone formation. Therefore, the <i>circ_0005044/miR-2964-3p/FOSL1</i> axis regulates DPSC osteo/odontogenic differentiation, which may provide potential molecular targets for dental-pulp complex regeneration.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hsa_<i>Circ_0005044</i> Promotes Osteo/Odontogenic Differentiation of Dental Pulp Stem Cell Via Modulating <i>miR-296-3p/FOSL1</i>.\",\"authors\":\"Zhongjun Liu, Siwei Li, Shuaimei Xu, Nu Er Bi Ya A Bu Du Xi Ku, Jun Wen, Xiongqun Zeng, Xiaoqing Shen, Pingping Xu\",\"doi\":\"10.1089/dna.2022.0394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circular RNAs (circRNAs) are a form of RNAs that lack coding potential. The role of such circRNAs in dental pulp stem cell (DPSC) osteo/odontogenic differentiation remains to be determined. In this study, circRNA expression profiles in DPSC osteo/odontogenic differentiation process were analyzed by RNA-seq. qRT-PCR was used to confirm the differential expression of <i>circ_0005044</i>, <i>miR-296-3p</i>, and <i>FOSL1</i> in DPSC osteogenic differentiation process. <i>Circ_0005044</i>, <i>miR-296-3p</i>, and <i>FOSL1</i> were knocked down or overexpressed. Osteoblastic activity and associated mineral activity were monitored via alkaline phosphatase (<i>ALP</i>) and alizarin red S (ARS) staining. Interactions between <i>miR-296-3p</i>, <i>circ_0005044</i>, and <i>FOSL1</i> were assessed through luciferase reporter assays. Finally, an <i>in vivo</i> system was used to confirm the relevance of <i>circ_0005044</i> to osteoblastic differentiation. As results, we detected significant <i>circ_0005044</i> and <i>FOSL1</i> upregulation in DPSC osteo/odontogenic differentiation process, as well as concomitant <i>miR-296-3p</i> downregulation. When knocking down <i>circ_0005044</i> or overexpressed <i>miR-296-3p</i>, this significantly inhibited osteogenesis. Luciferase reporter assay confirmed that <i>miR-296-3p</i> was capable of binding to conserved sequences in the wild-type forms of both the <i>circ_0005044</i> and <i>FOSL1</i>. Furthermore, knocking down <i>circ_0005044 in vivo</i> significantly attenuated bone formation. Therefore, the <i>circ_0005044/miR-2964-3p/FOSL1</i> axis regulates DPSC osteo/odontogenic differentiation, which may provide potential molecular targets for dental-pulp complex regeneration.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/dna.2022.0394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2022.0394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Hsa_Circ_0005044 Promotes Osteo/Odontogenic Differentiation of Dental Pulp Stem Cell Via Modulating miR-296-3p/FOSL1.
Circular RNAs (circRNAs) are a form of RNAs that lack coding potential. The role of such circRNAs in dental pulp stem cell (DPSC) osteo/odontogenic differentiation remains to be determined. In this study, circRNA expression profiles in DPSC osteo/odontogenic differentiation process were analyzed by RNA-seq. qRT-PCR was used to confirm the differential expression of circ_0005044, miR-296-3p, and FOSL1 in DPSC osteogenic differentiation process. Circ_0005044, miR-296-3p, and FOSL1 were knocked down or overexpressed. Osteoblastic activity and associated mineral activity were monitored via alkaline phosphatase (ALP) and alizarin red S (ARS) staining. Interactions between miR-296-3p, circ_0005044, and FOSL1 were assessed through luciferase reporter assays. Finally, an in vivo system was used to confirm the relevance of circ_0005044 to osteoblastic differentiation. As results, we detected significant circ_0005044 and FOSL1 upregulation in DPSC osteo/odontogenic differentiation process, as well as concomitant miR-296-3p downregulation. When knocking down circ_0005044 or overexpressed miR-296-3p, this significantly inhibited osteogenesis. Luciferase reporter assay confirmed that miR-296-3p was capable of binding to conserved sequences in the wild-type forms of both the circ_0005044 and FOSL1. Furthermore, knocking down circ_0005044 in vivo significantly attenuated bone formation. Therefore, the circ_0005044/miR-2964-3p/FOSL1 axis regulates DPSC osteo/odontogenic differentiation, which may provide potential molecular targets for dental-pulp complex regeneration.