Cristhian Cadena, Opher S. Kornfeld, Bettina L. Lee, Nobuhiko Kayagaki
{"title":"气胚乳的表观遗传和转录调控","authors":"Cristhian Cadena, Opher S. Kornfeld, Bettina L. Lee, Nobuhiko Kayagaki","doi":"10.1016/j.smim.2023.101841","DOIUrl":null,"url":null,"abstract":"<div><p>Cells undergo an inflammatory programmed lytic cell death called ‘pyroptosis’ (with the Greek roots ‘fiery’), often featuring morphological hallmarks such as large ballooning protrusions and subsequent bursting. Originally described as a caspase-1-dependent cell death in response to bacterial infection, pyroptosis has since been re-defined in 2018 as a cell death dependent on plasma membrane pores by a gasdermin (GSDM) family member <span>[1]</span>, <span>[2]</span>. GSDMs form pores in the plasma membrane as well as organelle membranes, thereby initiating membrane destruction and the rapid and lytic demise of a cell. The gasdermin family plays a profound role in the execution of pyroptosis in the context of infection, inflammation, tumor pathogenesis, and anti-tumor therapy. More recently, cell-death-independent functions for some of the GSDMs have been proposed. Therefore, a comprehensive understanding of gasdermin gene regulation, including mechanisms in both homeostatic conditions and during inflammation, is essential. In this review, we will summarize the role of gasdermins in pyroptosis and focus our discussion on the transcriptional and epigenetic mechanisms controlling the expression of GSDMs.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"70 ","pages":"Article 101841"},"PeriodicalIF":7.4000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigenetic and transcriptional control of gasdermins\",\"authors\":\"Cristhian Cadena, Opher S. Kornfeld, Bettina L. Lee, Nobuhiko Kayagaki\",\"doi\":\"10.1016/j.smim.2023.101841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cells undergo an inflammatory programmed lytic cell death called ‘pyroptosis’ (with the Greek roots ‘fiery’), often featuring morphological hallmarks such as large ballooning protrusions and subsequent bursting. Originally described as a caspase-1-dependent cell death in response to bacterial infection, pyroptosis has since been re-defined in 2018 as a cell death dependent on plasma membrane pores by a gasdermin (GSDM) family member <span>[1]</span>, <span>[2]</span>. GSDMs form pores in the plasma membrane as well as organelle membranes, thereby initiating membrane destruction and the rapid and lytic demise of a cell. The gasdermin family plays a profound role in the execution of pyroptosis in the context of infection, inflammation, tumor pathogenesis, and anti-tumor therapy. More recently, cell-death-independent functions for some of the GSDMs have been proposed. Therefore, a comprehensive understanding of gasdermin gene regulation, including mechanisms in both homeostatic conditions and during inflammation, is essential. In this review, we will summarize the role of gasdermins in pyroptosis and focus our discussion on the transcriptional and epigenetic mechanisms controlling the expression of GSDMs.</p></div>\",\"PeriodicalId\":49546,\"journal\":{\"name\":\"Seminars in Immunology\",\"volume\":\"70 \",\"pages\":\"Article 101841\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S104453232300132X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104453232300132X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Epigenetic and transcriptional control of gasdermins
Cells undergo an inflammatory programmed lytic cell death called ‘pyroptosis’ (with the Greek roots ‘fiery’), often featuring morphological hallmarks such as large ballooning protrusions and subsequent bursting. Originally described as a caspase-1-dependent cell death in response to bacterial infection, pyroptosis has since been re-defined in 2018 as a cell death dependent on plasma membrane pores by a gasdermin (GSDM) family member [1], [2]. GSDMs form pores in the plasma membrane as well as organelle membranes, thereby initiating membrane destruction and the rapid and lytic demise of a cell. The gasdermin family plays a profound role in the execution of pyroptosis in the context of infection, inflammation, tumor pathogenesis, and anti-tumor therapy. More recently, cell-death-independent functions for some of the GSDMs have been proposed. Therefore, a comprehensive understanding of gasdermin gene regulation, including mechanisms in both homeostatic conditions and during inflammation, is essential. In this review, we will summarize the role of gasdermins in pyroptosis and focus our discussion on the transcriptional and epigenetic mechanisms controlling the expression of GSDMs.
期刊介绍:
Seminars in Immunology is a specialized review journal that serves as a valuable resource for scientists in the field of immunology. The journal's approach is thematic, with each issue dedicated to a specific topic of significant interest to immunologists. It covers a wide range of research areas, from the molecular and cellular foundations of the immune response to the potential for its manipulation, highlighting recent advancements in these areas.
Each thematic issue is curated by a guest editor, who is recognized as an expert in the field internationally. The content of each issue typically includes six to eight authoritative invited reviews, which delve into various aspects of the chosen topic. The goal of these reviews is to provide a comprehensive, coherent, and engaging overview of the subject matter, ensuring that the information is presented in a timely manner to maintain its relevance.
The journal's commitment to quality and timeliness is further supported by its inclusion in the Scopus database, which is a leading abstract and citation database of peer-reviewed literature. Being indexed in Scopus helps to ensure that the journal's content is accessible to a broad audience of researchers and professionals in immunology and related fields.