Lauro Velazquez-Salinas , Elizabeth Ramirez-Medina , Ayushi Rai , Sarah Pruitt , Elizabeth A. Vuono , Nallely Espinoza , Cyril G. Gay , Steve Witte , Douglas P. Gladue , Manuel V. Borca
{"title":"证实重组非洲猪瘟减毒活疫苗中不存在非洲猪瘟亲本病毒作为潜在污染物","authors":"Lauro Velazquez-Salinas , Elizabeth Ramirez-Medina , Ayushi Rai , Sarah Pruitt , Elizabeth A. Vuono , Nallely Espinoza , Cyril G. Gay , Steve Witte , Douglas P. Gladue , Manuel V. Borca","doi":"10.1016/j.biologicals.2023.101685","DOIUrl":null,"url":null,"abstract":"<div><p>African swine fever (ASF) is a devastating disease that is currently producing a panzootic significantly impacting the swine industry worldwide. One of the major challenges for advancing the development of ASF vaccines has been the absence of international standards for ASF vaccine purity, potency, safety, and efficacy. To date, the most effective experimental vaccines have been live attenuated strains of viruses. Most of these promising vaccine candidates have been developed by deleting virus genes involved in the process of viral pathogenesis and disease production. This approach requires genomic modification of a parental virus field strain through a process of homologous recombination followed by purification of the recombinant attenuated virus. In this scenario, it is critical to confirm the absence of any parental virulent virus in the final virus stock used for vaccine production. We present here a protocol to establish the purity of virus stock using the live attenuated vaccine candidates ASFV-G-ΔMGF, ASFV-G-Δ9 GLΔUK and ASFV-G-ΔI177L. Procedures described here includes inoculation in susceptible pigs followed by the assessment of the obtained material by differential qPCRs that allows the identification of vaccine virus from ASFV field isolates. This protocol is proposed as a model to ensure that master seed virus stock used for vaccine production does not contain residual parental virulent virus.</p><p>Procedures described here includes a passage in susceptible pigs followed by the assessment of the obtained material by differential qPCRs that allows the identification of vaccine virus from ASFV field isolates.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Confirming the absence of parental African swine fever virus as a potential contaminant of recombinant live attenuated ASF vaccines\",\"authors\":\"Lauro Velazquez-Salinas , Elizabeth Ramirez-Medina , Ayushi Rai , Sarah Pruitt , Elizabeth A. Vuono , Nallely Espinoza , Cyril G. Gay , Steve Witte , Douglas P. Gladue , Manuel V. Borca\",\"doi\":\"10.1016/j.biologicals.2023.101685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>African swine fever (ASF) is a devastating disease that is currently producing a panzootic significantly impacting the swine industry worldwide. One of the major challenges for advancing the development of ASF vaccines has been the absence of international standards for ASF vaccine purity, potency, safety, and efficacy. To date, the most effective experimental vaccines have been live attenuated strains of viruses. Most of these promising vaccine candidates have been developed by deleting virus genes involved in the process of viral pathogenesis and disease production. This approach requires genomic modification of a parental virus field strain through a process of homologous recombination followed by purification of the recombinant attenuated virus. In this scenario, it is critical to confirm the absence of any parental virulent virus in the final virus stock used for vaccine production. We present here a protocol to establish the purity of virus stock using the live attenuated vaccine candidates ASFV-G-ΔMGF, ASFV-G-Δ9 GLΔUK and ASFV-G-ΔI177L. Procedures described here includes inoculation in susceptible pigs followed by the assessment of the obtained material by differential qPCRs that allows the identification of vaccine virus from ASFV field isolates. This protocol is proposed as a model to ensure that master seed virus stock used for vaccine production does not contain residual parental virulent virus.</p><p>Procedures described here includes a passage in susceptible pigs followed by the assessment of the obtained material by differential qPCRs that allows the identification of vaccine virus from ASFV field isolates.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1045105623000234\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045105623000234","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Confirming the absence of parental African swine fever virus as a potential contaminant of recombinant live attenuated ASF vaccines
African swine fever (ASF) is a devastating disease that is currently producing a panzootic significantly impacting the swine industry worldwide. One of the major challenges for advancing the development of ASF vaccines has been the absence of international standards for ASF vaccine purity, potency, safety, and efficacy. To date, the most effective experimental vaccines have been live attenuated strains of viruses. Most of these promising vaccine candidates have been developed by deleting virus genes involved in the process of viral pathogenesis and disease production. This approach requires genomic modification of a parental virus field strain through a process of homologous recombination followed by purification of the recombinant attenuated virus. In this scenario, it is critical to confirm the absence of any parental virulent virus in the final virus stock used for vaccine production. We present here a protocol to establish the purity of virus stock using the live attenuated vaccine candidates ASFV-G-ΔMGF, ASFV-G-Δ9 GLΔUK and ASFV-G-ΔI177L. Procedures described here includes inoculation in susceptible pigs followed by the assessment of the obtained material by differential qPCRs that allows the identification of vaccine virus from ASFV field isolates. This protocol is proposed as a model to ensure that master seed virus stock used for vaccine production does not contain residual parental virulent virus.
Procedures described here includes a passage in susceptible pigs followed by the assessment of the obtained material by differential qPCRs that allows the identification of vaccine virus from ASFV field isolates.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.