细胞对TiO2纳米管阵列衬底形貌的响应:细胞形态和粘附。

Monchupa Kingsak, Panita Maturavongsadit, Hong Jiang, Qian Wang
{"title":"细胞对TiO2纳米管阵列衬底形貌的响应:细胞形态和粘附。","authors":"Monchupa Kingsak,&nbsp;Panita Maturavongsadit,&nbsp;Hong Jiang,&nbsp;Qian Wang","doi":"10.12336/biomatertransl.2022.03.006","DOIUrl":null,"url":null,"abstract":"<p><p>Nanotopographical features can be beneficial in augmenting cell functions and increasing osteogenic potential. However, the relationships between surface topographies and biological responses are difficult to establish due to the difficulty in controlling the surface topographical features at a low-nanometre scale. Herein, we report the fabrication of well-defined controllable titanium dioxide (TiO<sub>2</sub>) nanotube arrays with a wide range of pore sizes, 30-175 nm in diameter, and use of the electrochemical anodization method to assess the effect of surface nanotopographies on cell morphology and adhesion. The results show that TiO<sub>2</sub> nanotube arrays with pore sizes of 30 and 80 nm allowed for cell spreading of bone marrow-derived mesenchymal stem cells with increased cell area coverage. Additionally, cell adhesion was significantly enhanced by controlled nanotopographies of TiO<sub>2</sub> nanotube arrays with 80 nm pore size. Our results demonstrate that surface modification at the nano-scale level with size tunability under controlled chemical/physical properties and culture conditions can greatly impact cell responses. These findings point to a new direction of material design for bone-tissue engineering in orthopaedic applications.</p>","PeriodicalId":58820,"journal":{"name":"Biomaterials Translational","volume":"3 3","pages":"221-233"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/77/12/bt-03-03-221.PMC9840087.pdf","citationCount":"2","resultStr":"{\"title\":\"Cellular responses to nanoscale substrate topography of TiO<sub>2</sub> nanotube arrays: cell morphology and adhesion.\",\"authors\":\"Monchupa Kingsak,&nbsp;Panita Maturavongsadit,&nbsp;Hong Jiang,&nbsp;Qian Wang\",\"doi\":\"10.12336/biomatertransl.2022.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanotopographical features can be beneficial in augmenting cell functions and increasing osteogenic potential. However, the relationships between surface topographies and biological responses are difficult to establish due to the difficulty in controlling the surface topographical features at a low-nanometre scale. Herein, we report the fabrication of well-defined controllable titanium dioxide (TiO<sub>2</sub>) nanotube arrays with a wide range of pore sizes, 30-175 nm in diameter, and use of the electrochemical anodization method to assess the effect of surface nanotopographies on cell morphology and adhesion. The results show that TiO<sub>2</sub> nanotube arrays with pore sizes of 30 and 80 nm allowed for cell spreading of bone marrow-derived mesenchymal stem cells with increased cell area coverage. Additionally, cell adhesion was significantly enhanced by controlled nanotopographies of TiO<sub>2</sub> nanotube arrays with 80 nm pore size. Our results demonstrate that surface modification at the nano-scale level with size tunability under controlled chemical/physical properties and culture conditions can greatly impact cell responses. These findings point to a new direction of material design for bone-tissue engineering in orthopaedic applications.</p>\",\"PeriodicalId\":58820,\"journal\":{\"name\":\"Biomaterials Translational\",\"volume\":\"3 3\",\"pages\":\"221-233\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/77/12/bt-03-03-221.PMC9840087.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Translational\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12336/biomatertransl.2022.03.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Translational","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12336/biomatertransl.2022.03.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

纳米形貌特征有助于增强细胞功能和增加成骨潜能。然而,由于难以在低纳米尺度上控制表面形貌特征,因此难以建立表面形貌与生物响应之间的关系。在此,我们报道了具有宽孔径30-175 nm的可控二氧化钛(TiO2)纳米管阵列的制备,并使用电化学阳极氧化方法来评估表面纳米形貌对细胞形态和粘附性的影响。结果表明,孔径为30 nm和80 nm的TiO2纳米管阵列有利于骨髓间充质干细胞的细胞扩散,增加了细胞面积覆盖。此外,控制孔径为80 nm的TiO2纳米管阵列的纳米形貌可以显著增强细胞的粘附性。我们的研究结果表明,在可控的化学/物理性质和培养条件下,纳米级的表面修饰具有尺寸可调性,可以极大地影响细胞反应。这些发现为骨组织工程材料设计在骨科中的应用指明了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cellular responses to nanoscale substrate topography of TiO2 nanotube arrays: cell morphology and adhesion.

Nanotopographical features can be beneficial in augmenting cell functions and increasing osteogenic potential. However, the relationships between surface topographies and biological responses are difficult to establish due to the difficulty in controlling the surface topographical features at a low-nanometre scale. Herein, we report the fabrication of well-defined controllable titanium dioxide (TiO2) nanotube arrays with a wide range of pore sizes, 30-175 nm in diameter, and use of the electrochemical anodization method to assess the effect of surface nanotopographies on cell morphology and adhesion. The results show that TiO2 nanotube arrays with pore sizes of 30 and 80 nm allowed for cell spreading of bone marrow-derived mesenchymal stem cells with increased cell area coverage. Additionally, cell adhesion was significantly enhanced by controlled nanotopographies of TiO2 nanotube arrays with 80 nm pore size. Our results demonstrate that surface modification at the nano-scale level with size tunability under controlled chemical/physical properties and culture conditions can greatly impact cell responses. These findings point to a new direction of material design for bone-tissue engineering in orthopaedic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
9
期刊最新文献
"Yin-Yang philosophy" for the design of anticancer drug delivery nanoparticles. Abalone shell-derived Mg-doped mesoporous hydroxyapatite microsphere drug delivery system loaded with icariin for inducing apoptosis of osteosarcoma cells. Advanced nanoparticles in osteoarthritis treatment. Artificial intelligence-enabled studies on organoid and organoid extracellular vesicles. Corrigendum: Enhanced angiogenesis in porous poly(ε-caprolactone) scaffolds fortified with methacrylated hyaluronic acid hydrogel after subcutaneous transplantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1