下载PDF
{"title":"利用睡美人(SB)转座子产生稳定的细胞,产生带SARS-CoV-2蛋白假型的包膜病毒样颗粒(evlp)用于疫苗接种。","authors":"Viviana Pszenny, Erick Tjhin, Eliza V C Alves-Ferreira, Stephanie Spada, Fadila Bouamr, Vinod Nair, Sundar Ganesan, Michael E Grigg","doi":"10.1002/cpz1.575","DOIUrl":null,"url":null,"abstract":"<p><p>The Sleeping Beauty (SB) transposon system is an efficient non-viral tool for gene transfer into a variety of cells, including human cells. Through a cut-and-paste mechanism, your favorite gene (YFG) is integrated into AT-rich regions within the genome, providing stable long-term expression of the transfected gene. The SB system is evolving and has become a powerful tool for gene therapy. There are no safety concerns using this system, the handling is easy, and the time required to obtain a stable cell line is significantly reduced compared to other systems currently available. Here, we present a novel application of this system to generate, within 8 days, a stable producer HEK293T cell line capable of constitutively delivering enveloped virus-like particles (eVLPs) for vaccination. We provide step-by-step protocols for generation of the SB transposon constructs, transfection procedures, and validation of the produced eVLPs. We next describe a method to pseudotype the constitutively produced eVLPs using the Spike protein derived from the SARS-CoV-2 virus (by coating the eVLP capsid with the heterologous antigen). We also describe optimization methods to scale up the production of pseudotyped eVLPs in a laboratory setting (from 100 µg to 5 mg). © Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Generation of the SB plasmids Basic Protocol 2: Generation of a stable HEK293T cell line constitutively secreting MLV-based eVLPs Basic Protocol 3: Evaluation of the SB constructs by immunofluorescence assay Basic Protocol 4: Validation of eVLPs by denaturing PAGE and western blot Alternate Protocol 1: Analysis of SARS-CoV-2 Spike protein oligomerization using blue native gel electrophoresis and western blot Alternate Protocol 2: Evaluation of eVLP quality by electron microscopy (negative staining) Basic Protocol 5: Small-scale production of eVLPs Alternate Protocol 3: Large-scale production of eVLPs (up to about 1 to 3 mg VLPs) Alternate Protocol 4: Large-scale production of eVLPs (up to about 3 to 5 mg VLPs) Support Protocol: Quantification of total protein concentration by Bradford assay.</p>","PeriodicalId":11174,"journal":{"name":"Current Protocols","volume":"2 10","pages":"e575"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874545/pdf/CPZ1-2-0.pdf","citationCount":"1","resultStr":"{\"title\":\"Using the Sleeping Beauty (SB) Transposon to Generate Stable Cells Producing Enveloped Virus-Like Particles (eVLPs) Pseudotyped with SARS-CoV-2 Proteins for Vaccination.\",\"authors\":\"Viviana Pszenny, Erick Tjhin, Eliza V C Alves-Ferreira, Stephanie Spada, Fadila Bouamr, Vinod Nair, Sundar Ganesan, Michael E Grigg\",\"doi\":\"10.1002/cpz1.575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Sleeping Beauty (SB) transposon system is an efficient non-viral tool for gene transfer into a variety of cells, including human cells. Through a cut-and-paste mechanism, your favorite gene (YFG) is integrated into AT-rich regions within the genome, providing stable long-term expression of the transfected gene. The SB system is evolving and has become a powerful tool for gene therapy. There are no safety concerns using this system, the handling is easy, and the time required to obtain a stable cell line is significantly reduced compared to other systems currently available. Here, we present a novel application of this system to generate, within 8 days, a stable producer HEK293T cell line capable of constitutively delivering enveloped virus-like particles (eVLPs) for vaccination. We provide step-by-step protocols for generation of the SB transposon constructs, transfection procedures, and validation of the produced eVLPs. We next describe a method to pseudotype the constitutively produced eVLPs using the Spike protein derived from the SARS-CoV-2 virus (by coating the eVLP capsid with the heterologous antigen). We also describe optimization methods to scale up the production of pseudotyped eVLPs in a laboratory setting (from 100 µg to 5 mg). © Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Generation of the SB plasmids Basic Protocol 2: Generation of a stable HEK293T cell line constitutively secreting MLV-based eVLPs Basic Protocol 3: Evaluation of the SB constructs by immunofluorescence assay Basic Protocol 4: Validation of eVLPs by denaturing PAGE and western blot Alternate Protocol 1: Analysis of SARS-CoV-2 Spike protein oligomerization using blue native gel electrophoresis and western blot Alternate Protocol 2: Evaluation of eVLP quality by electron microscopy (negative staining) Basic Protocol 5: Small-scale production of eVLPs Alternate Protocol 3: Large-scale production of eVLPs (up to about 1 to 3 mg VLPs) Alternate Protocol 4: Large-scale production of eVLPs (up to about 3 to 5 mg VLPs) Support Protocol: Quantification of total protein concentration by Bradford assay.</p>\",\"PeriodicalId\":11174,\"journal\":{\"name\":\"Current Protocols\",\"volume\":\"2 10\",\"pages\":\"e575\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874545/pdf/CPZ1-2-0.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cpz1.575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpz1.575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
引用
批量引用