Christopher S Mallery, Maira Carrillo, Ariel Mei, Ana Correia-Branco, Olga Kashpur, Mary C Wallingford
{"title":"止血胎盘的细胞复杂性:干细胞群体,scRNA-seq的见解和严重急性呼吸系统综合征冠状病毒2型易感性。","authors":"Christopher S Mallery, Maira Carrillo, Ariel Mei, Ana Correia-Branco, Olga Kashpur, Mary C Wallingford","doi":"10.1007/s40778-021-00194-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>The placenta is a transient organ that forms de novo and serves a critical role in supporting fetal growth and development. Placental oxygen, nutrients, and waste are transported through processes that depend on vascular structure and cell type-specific expression and localization of membrane transporters. Understanding how the placenta develops holds great significance for maternal-fetal medicine. The purpose of this review is to examine current information regarding placental progenitor populations.</p><p><strong>Recent findings: </strong>Recent advancements in single-cell RNA sequencing (scRNA-seq) provide unprecedented depth for the investigation of cell type-specific gene expression patterns in the placenta. Thus far, several mouse placenta scRNA-seq studies have been conducted which produced and analyzed transcriptomes of placental progenitors and cells of the fully developed placenta between embryonic day (E) 7.0 and E12.5. Together with human placenta scRNA-seq data which, in part, has been produced through coordinated research campaigns in the scientific community to understand the potential for SARS-CoV-2 infection, these mammalian studies lend fundamental insight into the cellular and molecular composition of hemochorial placentae found in both mouse and human.</p><p><strong>Summary: </strong>Single-cell placenta research has advanced understanding of tissue-resident stem cells and molecules that are poised to support maternal-fetal communication and nutrient transport. Herein, we provide context for these recent findings by reviewing placental anatomy and cell populations, and discuss recent scRNA-seq mouse placenta findings. Further research is needed to evaluate the utility of placental stem cells in the development of new therapeutic approaches for the treatment of wound healing and disease.</p>","PeriodicalId":37444,"journal":{"name":"Current Stem Cell Reports","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527817/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cellular Complexity of Hemochorial Placenta: Stem Cell Populations, Insights from scRNA-seq, and SARS-CoV-2 Susceptibility.\",\"authors\":\"Christopher S Mallery, Maira Carrillo, Ariel Mei, Ana Correia-Branco, Olga Kashpur, Mary C Wallingford\",\"doi\":\"10.1007/s40778-021-00194-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>The placenta is a transient organ that forms de novo and serves a critical role in supporting fetal growth and development. Placental oxygen, nutrients, and waste are transported through processes that depend on vascular structure and cell type-specific expression and localization of membrane transporters. Understanding how the placenta develops holds great significance for maternal-fetal medicine. The purpose of this review is to examine current information regarding placental progenitor populations.</p><p><strong>Recent findings: </strong>Recent advancements in single-cell RNA sequencing (scRNA-seq) provide unprecedented depth for the investigation of cell type-specific gene expression patterns in the placenta. Thus far, several mouse placenta scRNA-seq studies have been conducted which produced and analyzed transcriptomes of placental progenitors and cells of the fully developed placenta between embryonic day (E) 7.0 and E12.5. Together with human placenta scRNA-seq data which, in part, has been produced through coordinated research campaigns in the scientific community to understand the potential for SARS-CoV-2 infection, these mammalian studies lend fundamental insight into the cellular and molecular composition of hemochorial placentae found in both mouse and human.</p><p><strong>Summary: </strong>Single-cell placenta research has advanced understanding of tissue-resident stem cells and molecules that are poised to support maternal-fetal communication and nutrient transport. Herein, we provide context for these recent findings by reviewing placental anatomy and cell populations, and discuss recent scRNA-seq mouse placenta findings. Further research is needed to evaluate the utility of placental stem cells in the development of new therapeutic approaches for the treatment of wound healing and disease.</p>\",\"PeriodicalId\":37444,\"journal\":{\"name\":\"Current Stem Cell Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527817/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Stem Cell Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40778-021-00194-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/10/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Stem Cell Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40778-021-00194-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Cellular Complexity of Hemochorial Placenta: Stem Cell Populations, Insights from scRNA-seq, and SARS-CoV-2 Susceptibility.
Purpose of review: The placenta is a transient organ that forms de novo and serves a critical role in supporting fetal growth and development. Placental oxygen, nutrients, and waste are transported through processes that depend on vascular structure and cell type-specific expression and localization of membrane transporters. Understanding how the placenta develops holds great significance for maternal-fetal medicine. The purpose of this review is to examine current information regarding placental progenitor populations.
Recent findings: Recent advancements in single-cell RNA sequencing (scRNA-seq) provide unprecedented depth for the investigation of cell type-specific gene expression patterns in the placenta. Thus far, several mouse placenta scRNA-seq studies have been conducted which produced and analyzed transcriptomes of placental progenitors and cells of the fully developed placenta between embryonic day (E) 7.0 and E12.5. Together with human placenta scRNA-seq data which, in part, has been produced through coordinated research campaigns in the scientific community to understand the potential for SARS-CoV-2 infection, these mammalian studies lend fundamental insight into the cellular and molecular composition of hemochorial placentae found in both mouse and human.
Summary: Single-cell placenta research has advanced understanding of tissue-resident stem cells and molecules that are poised to support maternal-fetal communication and nutrient transport. Herein, we provide context for these recent findings by reviewing placental anatomy and cell populations, and discuss recent scRNA-seq mouse placenta findings. Further research is needed to evaluate the utility of placental stem cells in the development of new therapeutic approaches for the treatment of wound healing and disease.
期刊介绍:
The goal of this journal is to publish cutting-edge reviews on subjects pertinent to all aspects of stem cell research, therapy, ethics, commercialization, and policy. We aim to provide incisive, insightful, and balanced contributions from leading experts in each relevant domain that will be of immediate interest to a wide readership of clinicians, basic scientists, and translational investigators.
We accomplish this aim by appointing major authorities to serve as Section Editors in key subject areas across the discipline. Section Editors select topics to be reviewed by leading experts who emphasize recent developments and highlight important papers published over the past year on their topics, in a crisp and readable format. We also provide commentaries from well-known figures in the field, and an Editorial Board of internationally diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research.