Qing Li, Véronique Legault, Vincent-Daniel Girard, Luigi Ferrucci, Linda P Fried, Alan A Cohen
{"title":"用于人口调查的个人健康和老龄化的客观度量。","authors":"Qing Li, Véronique Legault, Vincent-Daniel Girard, Luigi Ferrucci, Linda P Fried, Alan A Cohen","doi":"10.1186/s12963-022-00289-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We have previously developed and validated a biomarker-based metric of overall health status using Mahalanobis distance (DM) to measure how far from the norm of a reference population (RP) an individual's biomarker profile is. DM is not particularly sensitive to the choice of biomarkers; however, this makes comparison across studies difficult. Here we aimed to identify and validate a standard, optimized version of DM that would be highly stable across populations, while using fewer and more commonly measured biomarkers.</p><p><strong>Methods: </strong>Using three datasets (the Baltimore Longitudinal Study of Aging, Invecchiare in Chianti and the National Health and Nutrition Examination Survey), we selected the most stable sets of biomarkers in all three populations, notably when interchanging RPs across populations. We performed regression models, using a fourth dataset (the Women's Health and Aging Study), to compare the new DM sets to other well-known metrics [allostatic load (AL) and self-assessed health (SAH)] in their association with diverse health outcomes: mortality, frailty, cardiovascular disease (CVD), diabetes, and comorbidity number.</p><p><strong>Results: </strong>A nine- (DM9) and a seventeen-biomarker set (DM17) were identified as highly stable regardless of the chosen RP (e.g.: mean correlation among versions generated by interchanging RPs across dataset of r = 0.94 for both DM9 and DM17). In general, DM17 and DM9 were both competitive compared with AL and SAH in predicting aging correlates, with some exceptions for DM9. For example, DM9, DM17, AL, and SAH all predicted mortality to a similar extent (ranges of hazard ratios of 1.15-1.30, 1.21-1.36, 1.17-1.38, and 1.17-1.49, respectively). On the other hand, DM9 predicted CVD less well than DM17 (ranges of odds ratios of 0.97-1.08, 1.07-1.85, respectively).</p><p><strong>Conclusions: </strong>The metrics we propose here are easy to measure with data that are already available in a wide array of panel, cohort, and clinical studies. The standardized versions here lose a small amount of predictive power compared to more complete versions, but are nonetheless competitive with existing metrics of overall health. DM17 performs slightly better than DM9 and should be preferred in most cases, but DM9 may still be used when a more limited number of biomarkers is available.</p>","PeriodicalId":51476,"journal":{"name":"Population Health Metrics","volume":"20 1","pages":"11"},"PeriodicalIF":3.2000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974028/pdf/","citationCount":"1","resultStr":"{\"title\":\"An objective metric of individual health and aging for population surveys.\",\"authors\":\"Qing Li, Véronique Legault, Vincent-Daniel Girard, Luigi Ferrucci, Linda P Fried, Alan A Cohen\",\"doi\":\"10.1186/s12963-022-00289-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>We have previously developed and validated a biomarker-based metric of overall health status using Mahalanobis distance (DM) to measure how far from the norm of a reference population (RP) an individual's biomarker profile is. DM is not particularly sensitive to the choice of biomarkers; however, this makes comparison across studies difficult. Here we aimed to identify and validate a standard, optimized version of DM that would be highly stable across populations, while using fewer and more commonly measured biomarkers.</p><p><strong>Methods: </strong>Using three datasets (the Baltimore Longitudinal Study of Aging, Invecchiare in Chianti and the National Health and Nutrition Examination Survey), we selected the most stable sets of biomarkers in all three populations, notably when interchanging RPs across populations. We performed regression models, using a fourth dataset (the Women's Health and Aging Study), to compare the new DM sets to other well-known metrics [allostatic load (AL) and self-assessed health (SAH)] in their association with diverse health outcomes: mortality, frailty, cardiovascular disease (CVD), diabetes, and comorbidity number.</p><p><strong>Results: </strong>A nine- (DM9) and a seventeen-biomarker set (DM17) were identified as highly stable regardless of the chosen RP (e.g.: mean correlation among versions generated by interchanging RPs across dataset of r = 0.94 for both DM9 and DM17). In general, DM17 and DM9 were both competitive compared with AL and SAH in predicting aging correlates, with some exceptions for DM9. For example, DM9, DM17, AL, and SAH all predicted mortality to a similar extent (ranges of hazard ratios of 1.15-1.30, 1.21-1.36, 1.17-1.38, and 1.17-1.49, respectively). On the other hand, DM9 predicted CVD less well than DM17 (ranges of odds ratios of 0.97-1.08, 1.07-1.85, respectively).</p><p><strong>Conclusions: </strong>The metrics we propose here are easy to measure with data that are already available in a wide array of panel, cohort, and clinical studies. The standardized versions here lose a small amount of predictive power compared to more complete versions, but are nonetheless competitive with existing metrics of overall health. DM17 performs slightly better than DM9 and should be preferred in most cases, but DM9 may still be used when a more limited number of biomarkers is available.</p>\",\"PeriodicalId\":51476,\"journal\":{\"name\":\"Population Health Metrics\",\"volume\":\"20 1\",\"pages\":\"11\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974028/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Population Health Metrics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12963-022-00289-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Population Health Metrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12963-022-00289-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
An objective metric of individual health and aging for population surveys.
Background: We have previously developed and validated a biomarker-based metric of overall health status using Mahalanobis distance (DM) to measure how far from the norm of a reference population (RP) an individual's biomarker profile is. DM is not particularly sensitive to the choice of biomarkers; however, this makes comparison across studies difficult. Here we aimed to identify and validate a standard, optimized version of DM that would be highly stable across populations, while using fewer and more commonly measured biomarkers.
Methods: Using three datasets (the Baltimore Longitudinal Study of Aging, Invecchiare in Chianti and the National Health and Nutrition Examination Survey), we selected the most stable sets of biomarkers in all three populations, notably when interchanging RPs across populations. We performed regression models, using a fourth dataset (the Women's Health and Aging Study), to compare the new DM sets to other well-known metrics [allostatic load (AL) and self-assessed health (SAH)] in their association with diverse health outcomes: mortality, frailty, cardiovascular disease (CVD), diabetes, and comorbidity number.
Results: A nine- (DM9) and a seventeen-biomarker set (DM17) were identified as highly stable regardless of the chosen RP (e.g.: mean correlation among versions generated by interchanging RPs across dataset of r = 0.94 for both DM9 and DM17). In general, DM17 and DM9 were both competitive compared with AL and SAH in predicting aging correlates, with some exceptions for DM9. For example, DM9, DM17, AL, and SAH all predicted mortality to a similar extent (ranges of hazard ratios of 1.15-1.30, 1.21-1.36, 1.17-1.38, and 1.17-1.49, respectively). On the other hand, DM9 predicted CVD less well than DM17 (ranges of odds ratios of 0.97-1.08, 1.07-1.85, respectively).
Conclusions: The metrics we propose here are easy to measure with data that are already available in a wide array of panel, cohort, and clinical studies. The standardized versions here lose a small amount of predictive power compared to more complete versions, but are nonetheless competitive with existing metrics of overall health. DM17 performs slightly better than DM9 and should be preferred in most cases, but DM9 may still be used when a more limited number of biomarkers is available.
期刊介绍:
Population Health Metrics aims to advance the science of population health assessment, and welcomes papers relating to concepts, methods, ethics, applications, and summary measures of population health. The journal provides a unique platform for population health researchers to share their findings with the global community. We seek research that addresses the communication of population health measures and policy implications to stakeholders; this includes papers related to burden estimation and risk assessment, and research addressing population health across the full range of development. Population Health Metrics covers a broad range of topics encompassing health state measurement and valuation, summary measures of population health, descriptive epidemiology at the population level, burden of disease and injury analysis, disease and risk factor modeling for populations, and comparative assessment of risks to health at the population level. The journal is also interested in how to use and communicate indicators of population health to reduce disease burden, and the approaches for translating from indicators of population health to health-advancing actions. As a cross-cutting topic of importance, we are particularly interested in inequalities in population health and their measurement.