将口服间充质干细胞衍生的细胞外囊泡用于骨再生疗法的临床前证据:系统综述。

IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING Stem Cells Translational Medicine Pub Date : 2023-12-18 DOI:10.1093/stcltm/szad059
Allinson Olaechea, Karim Benabdellah, Andrea Vergara-Buenaventura, Sara Gómez-Melero, Emilio A Cafferata, Jonathan Meza-Mauricio, Miguel Padial-Molina, Pablo Galindo-Moreno
{"title":"将口服间充质干细胞衍生的细胞外囊泡用于骨再生疗法的临床前证据:系统综述。","authors":"Allinson Olaechea, Karim Benabdellah, Andrea Vergara-Buenaventura, Sara Gómez-Melero, Emilio A Cafferata, Jonathan Meza-Mauricio, Miguel Padial-Molina, Pablo Galindo-Moreno","doi":"10.1093/stcltm/szad059","DOIUrl":null,"url":null,"abstract":"<p><p>The development of extracellular vesicles (EVs) therapies has revolutionized personalized medicine, opening up new possibilities for treatment. EVs have emerged as a promising therapeutic tool within this field due to their crucial role in intercellular communication across various cell types and organisms. This systematic review aims to evaluate the therapeutic potential of oral mesenchymal stem cell (MSC)-derived EVs for bone regeneration, specifically focusing on findings from preclinical models. Sixteen articles meeting the inclusion criteria were selected following document analysis. The biological effects of oral MSC-derived EVs predominantly involve the upregulation of proteins associated with angiogenesis, and inflammation resolution, alongside the downregulation of proinflammatory cytokines. Moreover, these therapeutic agents have been found to contain a significant quantity of different molecules (proteins, lipids, DNA, microRNAs, etc) further contributing to their modulatory potential. The findings from this systematic review underscore that oral MSC-derived EVs, irrespective of their specific population, have the ability to enhance the osteogenic repair response in maxillary bone or periodontal defects. In summary, this systematic review highlights the promising potential of oral MSC-derived EVs for bone regeneration based on evidence from preclinical models. The comprehensive assessment of their biological effects and the presence of microRNAs underscores their therapeutic significance. These findings support the utilization of oral MSC-derived EVs in enhancing the osteogenic repair response in various maxillary bone or periodontal defects, providing insights into the mechanisms involved and potential therapeutic applications in the field of personalized medicine.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"791-800"},"PeriodicalIF":5.4000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726404/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preclinical Evidence for the Use of Oral Mesenchymal Stem Cell-Derived Extracellular Vesicles in Bone Regenerative Therapy: A Systematic Review.\",\"authors\":\"Allinson Olaechea, Karim Benabdellah, Andrea Vergara-Buenaventura, Sara Gómez-Melero, Emilio A Cafferata, Jonathan Meza-Mauricio, Miguel Padial-Molina, Pablo Galindo-Moreno\",\"doi\":\"10.1093/stcltm/szad059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of extracellular vesicles (EVs) therapies has revolutionized personalized medicine, opening up new possibilities for treatment. EVs have emerged as a promising therapeutic tool within this field due to their crucial role in intercellular communication across various cell types and organisms. This systematic review aims to evaluate the therapeutic potential of oral mesenchymal stem cell (MSC)-derived EVs for bone regeneration, specifically focusing on findings from preclinical models. Sixteen articles meeting the inclusion criteria were selected following document analysis. The biological effects of oral MSC-derived EVs predominantly involve the upregulation of proteins associated with angiogenesis, and inflammation resolution, alongside the downregulation of proinflammatory cytokines. Moreover, these therapeutic agents have been found to contain a significant quantity of different molecules (proteins, lipids, DNA, microRNAs, etc) further contributing to their modulatory potential. The findings from this systematic review underscore that oral MSC-derived EVs, irrespective of their specific population, have the ability to enhance the osteogenic repair response in maxillary bone or periodontal defects. In summary, this systematic review highlights the promising potential of oral MSC-derived EVs for bone regeneration based on evidence from preclinical models. The comprehensive assessment of their biological effects and the presence of microRNAs underscores their therapeutic significance. These findings support the utilization of oral MSC-derived EVs in enhancing the osteogenic repair response in various maxillary bone or periodontal defects, providing insights into the mechanisms involved and potential therapeutic applications in the field of personalized medicine.</p>\",\"PeriodicalId\":21986,\"journal\":{\"name\":\"Stem Cells Translational Medicine\",\"volume\":\" \",\"pages\":\"791-800\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726404/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cells Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/stcltm/szad059\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szad059","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

细胞外囊泡(EVs)疗法的发展彻底改变了个性化医学,为治疗开辟了新的可能性。由于细胞外囊泡在各种细胞类型和生物体之间的细胞间通讯中发挥着至关重要的作用,它们已成为该领域中一种前景广阔的治疗工具。本系统综述旨在评估口服间充质干细胞(MSC)衍生的EVs在骨再生方面的治疗潜力,特别关注临床前模型的研究结果。经过文献分析,共筛选出16篇符合纳入标准的文章。口服间充质干细胞衍生的EVs的生物效应主要涉及上调与血管生成和炎症消退相关的蛋白质,以及下调促炎细胞因子。此外,研究还发现这些治疗剂含有大量不同的分子(蛋白质、脂类、DNA、microRNA 等),这进一步增强了它们的调节潜力。本系统综述的研究结果表明,口腔间充质干细胞衍生的EVs,无论其特定的群体如何,都有能力增强上颌骨或牙周缺损的成骨修复反应。总之,基于临床前模型的证据,本系统综述强调了口腔间充质干细胞衍生的EVs在骨再生方面的巨大潜力。对其生物效应的全面评估以及microRNAs的存在凸显了其治疗意义。这些研究结果支持利用口腔间充质干细胞衍生的EVs增强各种上颌骨或牙周缺损的成骨修复反应,为个性化医学领域的相关机制和潜在治疗应用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preclinical Evidence for the Use of Oral Mesenchymal Stem Cell-Derived Extracellular Vesicles in Bone Regenerative Therapy: A Systematic Review.

The development of extracellular vesicles (EVs) therapies has revolutionized personalized medicine, opening up new possibilities for treatment. EVs have emerged as a promising therapeutic tool within this field due to their crucial role in intercellular communication across various cell types and organisms. This systematic review aims to evaluate the therapeutic potential of oral mesenchymal stem cell (MSC)-derived EVs for bone regeneration, specifically focusing on findings from preclinical models. Sixteen articles meeting the inclusion criteria were selected following document analysis. The biological effects of oral MSC-derived EVs predominantly involve the upregulation of proteins associated with angiogenesis, and inflammation resolution, alongside the downregulation of proinflammatory cytokines. Moreover, these therapeutic agents have been found to contain a significant quantity of different molecules (proteins, lipids, DNA, microRNAs, etc) further contributing to their modulatory potential. The findings from this systematic review underscore that oral MSC-derived EVs, irrespective of their specific population, have the ability to enhance the osteogenic repair response in maxillary bone or periodontal defects. In summary, this systematic review highlights the promising potential of oral MSC-derived EVs for bone regeneration based on evidence from preclinical models. The comprehensive assessment of their biological effects and the presence of microRNAs underscores their therapeutic significance. These findings support the utilization of oral MSC-derived EVs in enhancing the osteogenic repair response in various maxillary bone or periodontal defects, providing insights into the mechanisms involved and potential therapeutic applications in the field of personalized medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cells Translational Medicine
Stem Cells Translational Medicine CELL & TISSUE ENGINEERING-
CiteScore
12.90
自引率
3.30%
发文量
140
审稿时长
6-12 weeks
期刊介绍: STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal. STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes. The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.
期刊最新文献
Tailoring cell therapies for diabetic metabolic phenotypes: a comparative study on the efficacy of various umbilical cord-derived cell regimens. Human umbilical cord mesenchymal stem cells small extracellular vesicles-derived miR-370-3p inhibits cervical precancerous lesions by targeting DHCR24. Exploring mesenchymal stem cells homing mechanisms and improvement strategies. Progranulin enhances the engraftment of transplanted human iPS cell-derived cerebral neurons. eIF6 modulates skin wound healing by upregulating keratin 6B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1