葡萄多酚对嗜粘阿克曼氏菌和肠道屏障的影响。

IF 2.7 Q3 MICROBIOLOGY AIMS Microbiology Pub Date : 2022-12-22 eCollection Date: 2022-01-01 DOI:10.3934/microbiol.2022035
Esther Mezhibovsky, Yue Wu, Fiona G Bawagan, Kevin M Tveter, Samantha Szeto, Diana Roopchand
{"title":"葡萄多酚对嗜粘阿克曼氏菌和肠道屏障的影响。","authors":"Esther Mezhibovsky, Yue Wu, Fiona G Bawagan, Kevin M Tveter, Samantha Szeto, Diana Roopchand","doi":"10.3934/microbiol.2022035","DOIUrl":null,"url":null,"abstract":"<p><p>A healthy gastrointestinal tract functions as a highly selective barrier, allowing the absorption of nutrients and metabolites while preventing gut bacteria and other xenobiotic compounds from entering host circulation and tissues. The intestinal epithelium and intestinal mucus provide a physical first line of defense against resident microbes, pathogens and xenotoxic compounds. Prior studies have indicated that the gut microbe <i>Akkermansia muciniphila</i>, a mucin-metabolizer, can stimulate intestinal mucin thickness to improve gut barrier integrity. Grape polyphenol (GP) extracts rich in B-type proanthocyanidin (PAC) compounds have been found to increase the relative abundance of <i>A. muciniphila</i>, suggesting that PACs alter the gut microbiota to support a healthy gut barrier. To further investigate the effect of GPs on the gut barrier and <i>A. muciniphila</i>, male C57BL/6 mice were fed a high-fat diet (HFD) or low-fat diet (LFD) with or without 1% GPs (HFD-GP, LFD-GP) for 12 weeks. Compared to the mice fed unsupplemented diets, GP-supplemented mice showed increased relative abundance of fecal and cecal <i>A. muciniphila</i>, a reduction in total bacteria, a diminished colon mucus layer and increased fecal mucus content. GP supplementation also reduced the presence of goblet cells regardless of dietary fat. Compared to the HFD group, ileal gene expression of lipopolysaccharide (LPS)-binding protein (<i>Lbp</i>), an acute-phase protein that promotes pro-inflammatory cytokine expression, was reduced in the HFD-GP group, suggesting reduced LPS in circulation. Despite depletion of the colonic mucus layer, markers of inflammation (<i>Ifng, Il1b, Tnfa, and Nos2</i>) were similar among the four groups, with the exception that ileal <i>Il6</i> mRNA levels were lower in the LFD-GP group compared to the LFD group. Our findings suggest that the GP-induced increase in <i>A. muciniphila</i> promotes redistribution of the intestinal mucus layer to the intestinal lumen, and that the GP-induced decrease in total bacteria results in a less inflammatory intestinal milieu.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"8 4","pages":"544-565"},"PeriodicalIF":2.7000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834079/pdf/","citationCount":"2","resultStr":"{\"title\":\"Impact of grape polyphenols on <i>Akkermansia muciniphila</i> and the gut barrier.\",\"authors\":\"Esther Mezhibovsky, Yue Wu, Fiona G Bawagan, Kevin M Tveter, Samantha Szeto, Diana Roopchand\",\"doi\":\"10.3934/microbiol.2022035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A healthy gastrointestinal tract functions as a highly selective barrier, allowing the absorption of nutrients and metabolites while preventing gut bacteria and other xenobiotic compounds from entering host circulation and tissues. The intestinal epithelium and intestinal mucus provide a physical first line of defense against resident microbes, pathogens and xenotoxic compounds. Prior studies have indicated that the gut microbe <i>Akkermansia muciniphila</i>, a mucin-metabolizer, can stimulate intestinal mucin thickness to improve gut barrier integrity. Grape polyphenol (GP) extracts rich in B-type proanthocyanidin (PAC) compounds have been found to increase the relative abundance of <i>A. muciniphila</i>, suggesting that PACs alter the gut microbiota to support a healthy gut barrier. To further investigate the effect of GPs on the gut barrier and <i>A. muciniphila</i>, male C57BL/6 mice were fed a high-fat diet (HFD) or low-fat diet (LFD) with or without 1% GPs (HFD-GP, LFD-GP) for 12 weeks. Compared to the mice fed unsupplemented diets, GP-supplemented mice showed increased relative abundance of fecal and cecal <i>A. muciniphila</i>, a reduction in total bacteria, a diminished colon mucus layer and increased fecal mucus content. GP supplementation also reduced the presence of goblet cells regardless of dietary fat. Compared to the HFD group, ileal gene expression of lipopolysaccharide (LPS)-binding protein (<i>Lbp</i>), an acute-phase protein that promotes pro-inflammatory cytokine expression, was reduced in the HFD-GP group, suggesting reduced LPS in circulation. Despite depletion of the colonic mucus layer, markers of inflammation (<i>Ifng, Il1b, Tnfa, and Nos2</i>) were similar among the four groups, with the exception that ileal <i>Il6</i> mRNA levels were lower in the LFD-GP group compared to the LFD group. Our findings suggest that the GP-induced increase in <i>A. muciniphila</i> promotes redistribution of the intestinal mucus layer to the intestinal lumen, and that the GP-induced decrease in total bacteria results in a less inflammatory intestinal milieu.</p>\",\"PeriodicalId\":46108,\"journal\":{\"name\":\"AIMS Microbiology\",\"volume\":\"8 4\",\"pages\":\"544-565\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834079/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/microbiol.2022035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/microbiol.2022035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

健康的胃肠道作为一个高度选择性的屏障,允许营养物质和代谢物的吸收,同时防止肠道细菌和其他外来化合物进入宿主循环和组织。肠上皮和肠粘液提供了抵抗常驻微生物、病原体和异种毒性化合物的物理第一道防线。先前的研究表明,肠道微生物Akkermansia muciniphila是一种黏液代谢物质,可以刺激肠道黏液厚度,提高肠道屏障的完整性。富含b型原花青素(PAC)化合物的葡萄多酚(GP)提取物已被发现可以增加嗜粘杆菌的相对丰度,这表明PAC可以改变肠道微生物群以支持健康的肠道屏障。为了进一步研究gp对肠道屏障和嗜粘单歧杆菌的影响,将雄性C57BL/6小鼠分别饲喂高脂饲粮(HFD)和低脂饲粮(LFD),分别添加或不添加1% gp (HFD- gp, LFD- gp) 12周。与未添加gp的小鼠相比,添加gp的小鼠粪便和盲肠嗜粘杆菌的相对丰度增加,细菌总数减少,结肠黏液层减少,粪便黏液含量增加。无论饮食中是否含有脂肪,补充GP也能减少杯状细胞的存在。与HFD组相比,HFD- gp组回肠中脂多糖(LPS)结合蛋白(Lbp)的基因表达减少,Lbp是一种促进促炎细胞因子表达的急性期蛋白,提示循环中的LPS减少。尽管结肠黏液层耗竭,炎症标志物(Ifng、Il1b、Tnfa和Nos2)在四组之间相似,除了LFD- gp组的回肠Il6 mRNA水平低于LFD组。我们的研究结果表明,gp诱导的嗜粘杆菌的增加促进了肠黏液层向肠腔的重新分布,gp诱导的总细菌的减少导致肠道炎症环境的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of grape polyphenols on Akkermansia muciniphila and the gut barrier.

A healthy gastrointestinal tract functions as a highly selective barrier, allowing the absorption of nutrients and metabolites while preventing gut bacteria and other xenobiotic compounds from entering host circulation and tissues. The intestinal epithelium and intestinal mucus provide a physical first line of defense against resident microbes, pathogens and xenotoxic compounds. Prior studies have indicated that the gut microbe Akkermansia muciniphila, a mucin-metabolizer, can stimulate intestinal mucin thickness to improve gut barrier integrity. Grape polyphenol (GP) extracts rich in B-type proanthocyanidin (PAC) compounds have been found to increase the relative abundance of A. muciniphila, suggesting that PACs alter the gut microbiota to support a healthy gut barrier. To further investigate the effect of GPs on the gut barrier and A. muciniphila, male C57BL/6 mice were fed a high-fat diet (HFD) or low-fat diet (LFD) with or without 1% GPs (HFD-GP, LFD-GP) for 12 weeks. Compared to the mice fed unsupplemented diets, GP-supplemented mice showed increased relative abundance of fecal and cecal A. muciniphila, a reduction in total bacteria, a diminished colon mucus layer and increased fecal mucus content. GP supplementation also reduced the presence of goblet cells regardless of dietary fat. Compared to the HFD group, ileal gene expression of lipopolysaccharide (LPS)-binding protein (Lbp), an acute-phase protein that promotes pro-inflammatory cytokine expression, was reduced in the HFD-GP group, suggesting reduced LPS in circulation. Despite depletion of the colonic mucus layer, markers of inflammation (Ifng, Il1b, Tnfa, and Nos2) were similar among the four groups, with the exception that ileal Il6 mRNA levels were lower in the LFD-GP group compared to the LFD group. Our findings suggest that the GP-induced increase in A. muciniphila promotes redistribution of the intestinal mucus layer to the intestinal lumen, and that the GP-induced decrease in total bacteria results in a less inflammatory intestinal milieu.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Microbiology
AIMS Microbiology MICROBIOLOGY-
CiteScore
7.00
自引率
2.10%
发文量
22
审稿时长
8 weeks
期刊最新文献
Microbes' role in environmental pollution and remediation: a bioeconomy focus approach. Fungal photoinactivation doses for UV radiation and visible light-a data collection. The reduction of abiotic stress in food crops through climate-smart mycorrhiza-enriched biofertilizer. Marine microfossils: Tiny archives of ocean changes through deep time. Genetic diversity of Listeria monocytogenes from seafood products, its processing environment, and clinical origin in the Western Cape, South Africa using whole genome sequencing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1