{"title":"基于特征选择的三角算子增强阿基米德优化算法。","authors":"Imène Neggaz, Nabil Neggaz, Hadria Fizazi","doi":"10.1007/s00521-022-07925-8","DOIUrl":null,"url":null,"abstract":"<p><p>Due to technical advancements and the proliferation of mobile applications, facial analysis (FA) of humans has recently become an important area for computer vision research. FA investigates a variety of difficulties, including gender recognition, facial expression recognition, age and race recognition, with the goal of automatically comprehending social interactions. Due to the dimensional challenge posed by pre-trained CNN networks, the scientific community has developed numerous techniques inspired by biology, swarm intelligence theory, physics, and mathematical rules. This article presents a gender recognition system based on scAOA, that is a modified version of the Archimedes optimization algorithm (AOA). The latest variant (scAOA) enhances the exploitation stage by using trigonometric operators inspired by the sine cosine algorithm (SCA) in order to prevent local optima and to accelerate the convergence. The main purpose of this paper is to apply scAOA to select the relevant deep features provided by two pretrained models of CNN (AlexNet & ResNet) to recognize the gender of a human person categorized into two classes (men and women). Two datasets are used to evaluate the proposed approach (scAOA): the Brazilian FEI dataset and the Georgia Tech Face dataset (GT). In terms of accuracy, Fscore and statistical test, the comparison analysis demonstrates that scAOA outperforms other modern and competitive optimizers such as AOA, SCA, Ant lion optimizer (ALO), Salp swarm algorithm (SSA), Grey wolf optimizer (GWO), Simple genetic algorithm (SGA), Grasshopper optimization algorithm (GOA) and Particle swarm optimizer (PSO).</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 5","pages":"3903-3923"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569187/pdf/","citationCount":"1","resultStr":"{\"title\":\"Boosting Archimedes optimization algorithm using trigonometric operators based on feature selection for facial analysis.\",\"authors\":\"Imène Neggaz, Nabil Neggaz, Hadria Fizazi\",\"doi\":\"10.1007/s00521-022-07925-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to technical advancements and the proliferation of mobile applications, facial analysis (FA) of humans has recently become an important area for computer vision research. FA investigates a variety of difficulties, including gender recognition, facial expression recognition, age and race recognition, with the goal of automatically comprehending social interactions. Due to the dimensional challenge posed by pre-trained CNN networks, the scientific community has developed numerous techniques inspired by biology, swarm intelligence theory, physics, and mathematical rules. This article presents a gender recognition system based on scAOA, that is a modified version of the Archimedes optimization algorithm (AOA). The latest variant (scAOA) enhances the exploitation stage by using trigonometric operators inspired by the sine cosine algorithm (SCA) in order to prevent local optima and to accelerate the convergence. The main purpose of this paper is to apply scAOA to select the relevant deep features provided by two pretrained models of CNN (AlexNet & ResNet) to recognize the gender of a human person categorized into two classes (men and women). Two datasets are used to evaluate the proposed approach (scAOA): the Brazilian FEI dataset and the Georgia Tech Face dataset (GT). In terms of accuracy, Fscore and statistical test, the comparison analysis demonstrates that scAOA outperforms other modern and competitive optimizers such as AOA, SCA, Ant lion optimizer (ALO), Salp swarm algorithm (SSA), Grey wolf optimizer (GWO), Simple genetic algorithm (SGA), Grasshopper optimization algorithm (GOA) and Particle swarm optimizer (PSO).</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":\"35 5\",\"pages\":\"3903-3923\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569187/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-022-07925-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-07925-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Boosting Archimedes optimization algorithm using trigonometric operators based on feature selection for facial analysis.
Due to technical advancements and the proliferation of mobile applications, facial analysis (FA) of humans has recently become an important area for computer vision research. FA investigates a variety of difficulties, including gender recognition, facial expression recognition, age and race recognition, with the goal of automatically comprehending social interactions. Due to the dimensional challenge posed by pre-trained CNN networks, the scientific community has developed numerous techniques inspired by biology, swarm intelligence theory, physics, and mathematical rules. This article presents a gender recognition system based on scAOA, that is a modified version of the Archimedes optimization algorithm (AOA). The latest variant (scAOA) enhances the exploitation stage by using trigonometric operators inspired by the sine cosine algorithm (SCA) in order to prevent local optima and to accelerate the convergence. The main purpose of this paper is to apply scAOA to select the relevant deep features provided by two pretrained models of CNN (AlexNet & ResNet) to recognize the gender of a human person categorized into two classes (men and women). Two datasets are used to evaluate the proposed approach (scAOA): the Brazilian FEI dataset and the Georgia Tech Face dataset (GT). In terms of accuracy, Fscore and statistical test, the comparison analysis demonstrates that scAOA outperforms other modern and competitive optimizers such as AOA, SCA, Ant lion optimizer (ALO), Salp swarm algorithm (SSA), Grey wolf optimizer (GWO), Simple genetic algorithm (SGA), Grasshopper optimization algorithm (GOA) and Particle swarm optimizer (PSO).
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.