乳清蛋白保护暴露于丙烯醛的大鼠的肝脏线粒体功能免受氧化应激。

IF 1.7 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology Pub Date : 2022-09-01 DOI:10.2478/aiht-2022-73-3640
Birsen Aydın, Ali Oğuz, Vedat Şekeroğlu, Zülal Atlı Şekeroğlu
{"title":"乳清蛋白保护暴露于丙烯醛的大鼠的肝脏线粒体功能免受氧化应激。","authors":"Birsen Aydın,&nbsp;Ali Oğuz,&nbsp;Vedat Şekeroğlu,&nbsp;Zülal Atlı Şekeroğlu","doi":"10.2478/aiht-2022-73-3640","DOIUrl":null,"url":null,"abstract":"<p><p>Acrolein (AC) is one of the most toxic environmental pollutants, often associated with incomplete combustion of petrol, wood, and plastic, oil frying, and tobacco smoking, that causes oxidative damage to DNA and mitochondria. Considering that little is known about the protective effects of whey protein (WP) against AC-induced liver toxicity, the aim of our study was to learn more about them in respect to liver mitochondrial oxidative stress, respiratory enzymes, Krebs cycle enzymes, and adenosine triphosphate (ATP). To do that, we treated Sprague Dawley rats with daily doses of AC alone (5 mg/kg bw in 0.9 % NaCl solution), WP alone (200 mg/kg bw, in 0.9 % NaCl solution), or their combination by oral gavage for six days a week over 30 days. As expected, the AC group showed a drop in glutathione levels and antioxidant, transport chain, and tricarboxylic acid cycle enzyme activities and a significant rise in mitochondrial lipid peroxidation and protein carbonyl levels. Co-treatment with WP mitigated oxidative stress and improved enzyme activities. Judging by the measured parameters, WP reduced AC toxicity by improving bioenergetic mechanisms and eliminating oxidative stress.</p>","PeriodicalId":55462,"journal":{"name":"Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology","volume":"73 3","pages":"200-206"},"PeriodicalIF":1.7000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a4/18/aiht-73-200.PMC9837534.pdf","citationCount":"3","resultStr":"{\"title\":\"Whey protein protects liver mitochondrial function against oxidative stress in rats exposed to acrolein.\",\"authors\":\"Birsen Aydın,&nbsp;Ali Oğuz,&nbsp;Vedat Şekeroğlu,&nbsp;Zülal Atlı Şekeroğlu\",\"doi\":\"10.2478/aiht-2022-73-3640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acrolein (AC) is one of the most toxic environmental pollutants, often associated with incomplete combustion of petrol, wood, and plastic, oil frying, and tobacco smoking, that causes oxidative damage to DNA and mitochondria. Considering that little is known about the protective effects of whey protein (WP) against AC-induced liver toxicity, the aim of our study was to learn more about them in respect to liver mitochondrial oxidative stress, respiratory enzymes, Krebs cycle enzymes, and adenosine triphosphate (ATP). To do that, we treated Sprague Dawley rats with daily doses of AC alone (5 mg/kg bw in 0.9 % NaCl solution), WP alone (200 mg/kg bw, in 0.9 % NaCl solution), or their combination by oral gavage for six days a week over 30 days. As expected, the AC group showed a drop in glutathione levels and antioxidant, transport chain, and tricarboxylic acid cycle enzyme activities and a significant rise in mitochondrial lipid peroxidation and protein carbonyl levels. Co-treatment with WP mitigated oxidative stress and improved enzyme activities. Judging by the measured parameters, WP reduced AC toxicity by improving bioenergetic mechanisms and eliminating oxidative stress.</p>\",\"PeriodicalId\":55462,\"journal\":{\"name\":\"Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology\",\"volume\":\"73 3\",\"pages\":\"200-206\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a4/18/aiht-73-200.PMC9837534.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2478/aiht-2022-73-3640\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/aiht-2022-73-3640","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 3

摘要

丙烯醛(AC)是最有毒的环境污染物之一,通常与汽油、木材和塑料的不完全燃烧、油炸和吸烟有关,会导致DNA和线粒体的氧化损伤。考虑到乳清蛋白(WP)对ac诱导的肝毒性的保护作用知之甚少,我们研究的目的是更多地了解它们在肝脏线粒体氧化应激、呼吸酶、克雷布斯循环酶和三磷酸腺苷(ATP)方面的作用。为此,我们对Sprague Dawley大鼠进行了单剂量AC (5 mg/kg bw, 0.9% NaCl溶液)、单剂量WP (200 mg/kg bw, 0.9% NaCl溶液)或两种药物联合灌胃治疗,每周灌胃6天,持续30天。正如预期的那样,AC组谷胱甘肽水平和抗氧化剂、运输链和三羧酸循环酶活性下降,线粒体脂质过氧化和蛋白质羰基水平显著升高。与WP共处理可减轻氧化应激,提高酶活性。从测量参数来看,WP通过改善生物能量机制和消除氧化应激来降低AC毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Whey protein protects liver mitochondrial function against oxidative stress in rats exposed to acrolein.

Acrolein (AC) is one of the most toxic environmental pollutants, often associated with incomplete combustion of petrol, wood, and plastic, oil frying, and tobacco smoking, that causes oxidative damage to DNA and mitochondria. Considering that little is known about the protective effects of whey protein (WP) against AC-induced liver toxicity, the aim of our study was to learn more about them in respect to liver mitochondrial oxidative stress, respiratory enzymes, Krebs cycle enzymes, and adenosine triphosphate (ATP). To do that, we treated Sprague Dawley rats with daily doses of AC alone (5 mg/kg bw in 0.9 % NaCl solution), WP alone (200 mg/kg bw, in 0.9 % NaCl solution), or their combination by oral gavage for six days a week over 30 days. As expected, the AC group showed a drop in glutathione levels and antioxidant, transport chain, and tricarboxylic acid cycle enzyme activities and a significant rise in mitochondrial lipid peroxidation and protein carbonyl levels. Co-treatment with WP mitigated oxidative stress and improved enzyme activities. Judging by the measured parameters, WP reduced AC toxicity by improving bioenergetic mechanisms and eliminating oxidative stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology
Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-TOXICOLOGY
CiteScore
3.50
自引率
4.80%
发文量
26
审稿时长
6-12 weeks
期刊介绍: Archives of Industrial Hygiene and Toxicology (abbr. Arh Hig Rada Toksikol) is a peer-reviewed biomedical scientific quarterly that publishes contributions relevant to all aspects of environmental and occupational health and toxicology.
期刊最新文献
An in vitro evaluation of the cytotoxic potential of medicinal mushrooms against human breast cancer cell lines. Body composition and nutritional status in nursing home residents during the COVID-19 lockdown: a 15-month follow-up. Comparison of different disinfection protocols against contamination of ceramic surfaces with Klebsiella pneumoniae biofilm. Do immediate supervisors underestimate burnout in subordinates? A comparison between burnout self-assessment by nurses and assessment by immediate supervisors. Exosomes: intriguing mediators of intercellular communication in the organism's response to noxious agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1