Yiming Zhang, Ran Zhou, Lunxu Liu, Lu Chen, Yuan Wang
{"title":"轨迹图:一个灵活的基因组数据组合分析工具包。","authors":"Yiming Zhang, Ran Zhou, Lunxu Liu, Lu Chen, Yuan Wang","doi":"10.1371/journal.pcbi.1011477","DOIUrl":null,"url":null,"abstract":"<p><p>Here, we introduce Trackplot, a Python package for generating publication-quality visualization by a programmable and interactive web-based approach. Compared to the existing versions of programs generating sashimi plots, Trackplot offers a versatile platform for visually interpreting genomic data from a wide variety of sources, including gene annotation with functional domain mapping, isoform expression, isoform structures identified by scRNA-seq and long-read sequencing, as well as chromatin accessibility and architecture without any preprocessing, and also offers a broad degree of flexibility for formats of output files that satisfy the requirements of major journals. The Trackplot package is an open-source software which is freely available on Bioconda (https://anaconda.org/bioconda/trackplot), Docker (https://hub.docker.com/r/ygidtu/trackplot), PyPI (https://pypi.org/project/trackplot/) and GitHub (https://github.com/ygidtu/trackplot), and a built-in web server for local deployment is also provided.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011477"},"PeriodicalIF":4.3000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503704/pdf/","citationCount":"0","resultStr":"{\"title\":\"Trackplot: A flexible toolkit for combinatorial analysis of genomic data.\",\"authors\":\"Yiming Zhang, Ran Zhou, Lunxu Liu, Lu Chen, Yuan Wang\",\"doi\":\"10.1371/journal.pcbi.1011477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Here, we introduce Trackplot, a Python package for generating publication-quality visualization by a programmable and interactive web-based approach. Compared to the existing versions of programs generating sashimi plots, Trackplot offers a versatile platform for visually interpreting genomic data from a wide variety of sources, including gene annotation with functional domain mapping, isoform expression, isoform structures identified by scRNA-seq and long-read sequencing, as well as chromatin accessibility and architecture without any preprocessing, and also offers a broad degree of flexibility for formats of output files that satisfy the requirements of major journals. The Trackplot package is an open-source software which is freely available on Bioconda (https://anaconda.org/bioconda/trackplot), Docker (https://hub.docker.com/r/ygidtu/trackplot), PyPI (https://pypi.org/project/trackplot/) and GitHub (https://github.com/ygidtu/trackplot), and a built-in web server for local deployment is also provided.</p>\",\"PeriodicalId\":49688,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"19 9\",\"pages\":\"e1011477\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503704/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1011477\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1011477","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Trackplot: A flexible toolkit for combinatorial analysis of genomic data.
Here, we introduce Trackplot, a Python package for generating publication-quality visualization by a programmable and interactive web-based approach. Compared to the existing versions of programs generating sashimi plots, Trackplot offers a versatile platform for visually interpreting genomic data from a wide variety of sources, including gene annotation with functional domain mapping, isoform expression, isoform structures identified by scRNA-seq and long-read sequencing, as well as chromatin accessibility and architecture without any preprocessing, and also offers a broad degree of flexibility for formats of output files that satisfy the requirements of major journals. The Trackplot package is an open-source software which is freely available on Bioconda (https://anaconda.org/bioconda/trackplot), Docker (https://hub.docker.com/r/ygidtu/trackplot), PyPI (https://pypi.org/project/trackplot/) and GitHub (https://github.com/ygidtu/trackplot), and a built-in web server for local deployment is also provided.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.