Neta Ravid Tannenbaum, Omer Gottesman, Azadeh Assadi, Mjaye Mazwi, Uri Shalit, Danny Eytan
{"title":"iCVS根据床边可用的生理信号推断心血管隐藏状态。","authors":"Neta Ravid Tannenbaum, Omer Gottesman, Azadeh Assadi, Mjaye Mazwi, Uri Shalit, Danny Eytan","doi":"10.1371/journal.pcbi.1010835","DOIUrl":null,"url":null,"abstract":"<p><p>Intensive care medicine is complex and resource-demanding. A critical and common challenge lies in inferring the underlying physiological state of a patient from partially observed data. Specifically for the cardiovascular system, clinicians use observables such as heart rate, arterial and venous blood pressures, as well as findings from the physical examination and ancillary tests to formulate a mental model and estimate hidden variables such as cardiac output, vascular resistance, filling pressures and volumes, and autonomic tone. Then, they use this mental model to derive the causes for instability and choose appropriate interventions. Not only this is a very hard problem due to the nature of the signals, but it also requires expertise and a clinician's ongoing presence at the bedside. Clinical decision support tools based on mechanistic dynamical models offer an appealing solution due to their inherent explainability, corollaries to the clinical mental process, and predictive power. With a translational motivation in mind, we developed iCVS: a simple, with high explanatory power, dynamical mechanistic model to infer hidden cardiovascular states. Full model estimation requires no prior assumptions on physiological parameters except age and weight, and the only inputs are arterial and venous pressure waveforms. iCVS also considers autonomic and non-autonomic modulations. To gain more information without increasing model complexity, both slow and fast timescales of the blood pressure traces are exploited, while the main inference and dynamic evolution are at the longer, clinically relevant, timescale of minutes. iCVS is designed to allow bedside deployment at pediatric and adult intensive care units and for retrospective investigation of cardiovascular mechanisms underlying instability. In this paper, we describe iCVS and inference system in detail, and using a dataset of critically-ill children, we provide initial indications to its ability to identify bleeding, distributive states, and cardiac dysfunction, in isolation and in combination.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1010835"},"PeriodicalIF":4.3000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503777/pdf/","citationCount":"0","resultStr":"{\"title\":\"iCVS-Inferring Cardio-Vascular hidden States from physiological signals available at the bedside.\",\"authors\":\"Neta Ravid Tannenbaum, Omer Gottesman, Azadeh Assadi, Mjaye Mazwi, Uri Shalit, Danny Eytan\",\"doi\":\"10.1371/journal.pcbi.1010835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intensive care medicine is complex and resource-demanding. A critical and common challenge lies in inferring the underlying physiological state of a patient from partially observed data. Specifically for the cardiovascular system, clinicians use observables such as heart rate, arterial and venous blood pressures, as well as findings from the physical examination and ancillary tests to formulate a mental model and estimate hidden variables such as cardiac output, vascular resistance, filling pressures and volumes, and autonomic tone. Then, they use this mental model to derive the causes for instability and choose appropriate interventions. Not only this is a very hard problem due to the nature of the signals, but it also requires expertise and a clinician's ongoing presence at the bedside. Clinical decision support tools based on mechanistic dynamical models offer an appealing solution due to their inherent explainability, corollaries to the clinical mental process, and predictive power. With a translational motivation in mind, we developed iCVS: a simple, with high explanatory power, dynamical mechanistic model to infer hidden cardiovascular states. Full model estimation requires no prior assumptions on physiological parameters except age and weight, and the only inputs are arterial and venous pressure waveforms. iCVS also considers autonomic and non-autonomic modulations. To gain more information without increasing model complexity, both slow and fast timescales of the blood pressure traces are exploited, while the main inference and dynamic evolution are at the longer, clinically relevant, timescale of minutes. iCVS is designed to allow bedside deployment at pediatric and adult intensive care units and for retrospective investigation of cardiovascular mechanisms underlying instability. In this paper, we describe iCVS and inference system in detail, and using a dataset of critically-ill children, we provide initial indications to its ability to identify bleeding, distributive states, and cardiac dysfunction, in isolation and in combination.</p>\",\"PeriodicalId\":49688,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"19 9\",\"pages\":\"e1010835\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503777/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1010835\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1010835","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
iCVS-Inferring Cardio-Vascular hidden States from physiological signals available at the bedside.
Intensive care medicine is complex and resource-demanding. A critical and common challenge lies in inferring the underlying physiological state of a patient from partially observed data. Specifically for the cardiovascular system, clinicians use observables such as heart rate, arterial and venous blood pressures, as well as findings from the physical examination and ancillary tests to formulate a mental model and estimate hidden variables such as cardiac output, vascular resistance, filling pressures and volumes, and autonomic tone. Then, they use this mental model to derive the causes for instability and choose appropriate interventions. Not only this is a very hard problem due to the nature of the signals, but it also requires expertise and a clinician's ongoing presence at the bedside. Clinical decision support tools based on mechanistic dynamical models offer an appealing solution due to their inherent explainability, corollaries to the clinical mental process, and predictive power. With a translational motivation in mind, we developed iCVS: a simple, with high explanatory power, dynamical mechanistic model to infer hidden cardiovascular states. Full model estimation requires no prior assumptions on physiological parameters except age and weight, and the only inputs are arterial and venous pressure waveforms. iCVS also considers autonomic and non-autonomic modulations. To gain more information without increasing model complexity, both slow and fast timescales of the blood pressure traces are exploited, while the main inference and dynamic evolution are at the longer, clinically relevant, timescale of minutes. iCVS is designed to allow bedside deployment at pediatric and adult intensive care units and for retrospective investigation of cardiovascular mechanisms underlying instability. In this paper, we describe iCVS and inference system in detail, and using a dataset of critically-ill children, we provide initial indications to its ability to identify bleeding, distributive states, and cardiac dysfunction, in isolation and in combination.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.