iCVS根据床边可用的生理信号推断心血管隐藏状态。

IF 4.3 2区 生物学 PLoS Computational Biology Pub Date : 2023-09-05 eCollection Date: 2023-09-01 DOI:10.1371/journal.pcbi.1010835
Neta Ravid Tannenbaum, Omer Gottesman, Azadeh Assadi, Mjaye Mazwi, Uri Shalit, Danny Eytan
{"title":"iCVS根据床边可用的生理信号推断心血管隐藏状态。","authors":"Neta Ravid Tannenbaum,&nbsp;Omer Gottesman,&nbsp;Azadeh Assadi,&nbsp;Mjaye Mazwi,&nbsp;Uri Shalit,&nbsp;Danny Eytan","doi":"10.1371/journal.pcbi.1010835","DOIUrl":null,"url":null,"abstract":"<p><p>Intensive care medicine is complex and resource-demanding. A critical and common challenge lies in inferring the underlying physiological state of a patient from partially observed data. Specifically for the cardiovascular system, clinicians use observables such as heart rate, arterial and venous blood pressures, as well as findings from the physical examination and ancillary tests to formulate a mental model and estimate hidden variables such as cardiac output, vascular resistance, filling pressures and volumes, and autonomic tone. Then, they use this mental model to derive the causes for instability and choose appropriate interventions. Not only this is a very hard problem due to the nature of the signals, but it also requires expertise and a clinician's ongoing presence at the bedside. Clinical decision support tools based on mechanistic dynamical models offer an appealing solution due to their inherent explainability, corollaries to the clinical mental process, and predictive power. With a translational motivation in mind, we developed iCVS: a simple, with high explanatory power, dynamical mechanistic model to infer hidden cardiovascular states. Full model estimation requires no prior assumptions on physiological parameters except age and weight, and the only inputs are arterial and venous pressure waveforms. iCVS also considers autonomic and non-autonomic modulations. To gain more information without increasing model complexity, both slow and fast timescales of the blood pressure traces are exploited, while the main inference and dynamic evolution are at the longer, clinically relevant, timescale of minutes. iCVS is designed to allow bedside deployment at pediatric and adult intensive care units and for retrospective investigation of cardiovascular mechanisms underlying instability. In this paper, we describe iCVS and inference system in detail, and using a dataset of critically-ill children, we provide initial indications to its ability to identify bleeding, distributive states, and cardiac dysfunction, in isolation and in combination.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1010835"},"PeriodicalIF":4.3000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503777/pdf/","citationCount":"0","resultStr":"{\"title\":\"iCVS-Inferring Cardio-Vascular hidden States from physiological signals available at the bedside.\",\"authors\":\"Neta Ravid Tannenbaum,&nbsp;Omer Gottesman,&nbsp;Azadeh Assadi,&nbsp;Mjaye Mazwi,&nbsp;Uri Shalit,&nbsp;Danny Eytan\",\"doi\":\"10.1371/journal.pcbi.1010835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intensive care medicine is complex and resource-demanding. A critical and common challenge lies in inferring the underlying physiological state of a patient from partially observed data. Specifically for the cardiovascular system, clinicians use observables such as heart rate, arterial and venous blood pressures, as well as findings from the physical examination and ancillary tests to formulate a mental model and estimate hidden variables such as cardiac output, vascular resistance, filling pressures and volumes, and autonomic tone. Then, they use this mental model to derive the causes for instability and choose appropriate interventions. Not only this is a very hard problem due to the nature of the signals, but it also requires expertise and a clinician's ongoing presence at the bedside. Clinical decision support tools based on mechanistic dynamical models offer an appealing solution due to their inherent explainability, corollaries to the clinical mental process, and predictive power. With a translational motivation in mind, we developed iCVS: a simple, with high explanatory power, dynamical mechanistic model to infer hidden cardiovascular states. Full model estimation requires no prior assumptions on physiological parameters except age and weight, and the only inputs are arterial and venous pressure waveforms. iCVS also considers autonomic and non-autonomic modulations. To gain more information without increasing model complexity, both slow and fast timescales of the blood pressure traces are exploited, while the main inference and dynamic evolution are at the longer, clinically relevant, timescale of minutes. iCVS is designed to allow bedside deployment at pediatric and adult intensive care units and for retrospective investigation of cardiovascular mechanisms underlying instability. In this paper, we describe iCVS and inference system in detail, and using a dataset of critically-ill children, we provide initial indications to its ability to identify bleeding, distributive states, and cardiac dysfunction, in isolation and in combination.</p>\",\"PeriodicalId\":49688,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"19 9\",\"pages\":\"e1010835\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503777/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1010835\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1010835","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

重症监护医学非常复杂,需要大量资源。一个关键而常见的挑战在于从部分观察到的数据推断患者的潜在生理状态。特别是对于心血管系统,临床医生使用心率、动脉和静脉血压等可观测值,以及体检和辅助测试的结果来建立心理模型,并估计隐藏的变量,如心输出量、血管阻力、充盈压力和容积,以及自主神经张力。然后,他们利用这种心理模型来推断不稳定的原因,并选择适当的干预措施。由于信号的性质,这不仅是一个非常困难的问题,而且还需要专业知识和临床医生在床边的持续存在。基于机械动力学模型的临床决策支持工具由于其固有的可解释性、对临床心理过程的推论和预测能力,提供了一个有吸引力的解决方案。考虑到翻译动机,我们开发了iCVS:一个简单、解释力强的动力学机制模型,用于推断隐藏的心血管状态。除了年龄和体重之外,完整的模型估计不需要对生理参数进行预先假设,并且唯一的输入是动脉和静脉压力波形。iCVS还考虑自主和非自主调节。为了在不增加模型复杂性的情况下获得更多信息,我们利用了血压轨迹的慢速和快速时间尺度,而主要的推断和动态进化是在更长的、临床相关的分钟时间尺度上。iCVS旨在允许在儿科和成人重症监护室的床边部署,并用于对潜在不稳定的心血管机制进行回顾性研究。在本文中,我们详细描述了iCVS和推理系统,并使用危重儿童的数据集,我们为其单独或组合识别出血、分布状态和心脏功能障碍的能力提供了初步指示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
iCVS-Inferring Cardio-Vascular hidden States from physiological signals available at the bedside.

Intensive care medicine is complex and resource-demanding. A critical and common challenge lies in inferring the underlying physiological state of a patient from partially observed data. Specifically for the cardiovascular system, clinicians use observables such as heart rate, arterial and venous blood pressures, as well as findings from the physical examination and ancillary tests to formulate a mental model and estimate hidden variables such as cardiac output, vascular resistance, filling pressures and volumes, and autonomic tone. Then, they use this mental model to derive the causes for instability and choose appropriate interventions. Not only this is a very hard problem due to the nature of the signals, but it also requires expertise and a clinician's ongoing presence at the bedside. Clinical decision support tools based on mechanistic dynamical models offer an appealing solution due to their inherent explainability, corollaries to the clinical mental process, and predictive power. With a translational motivation in mind, we developed iCVS: a simple, with high explanatory power, dynamical mechanistic model to infer hidden cardiovascular states. Full model estimation requires no prior assumptions on physiological parameters except age and weight, and the only inputs are arterial and venous pressure waveforms. iCVS also considers autonomic and non-autonomic modulations. To gain more information without increasing model complexity, both slow and fast timescales of the blood pressure traces are exploited, while the main inference and dynamic evolution are at the longer, clinically relevant, timescale of minutes. iCVS is designed to allow bedside deployment at pediatric and adult intensive care units and for retrospective investigation of cardiovascular mechanisms underlying instability. In this paper, we describe iCVS and inference system in detail, and using a dataset of critically-ill children, we provide initial indications to its ability to identify bleeding, distributive states, and cardiac dysfunction, in isolation and in combination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology 生物-生化研究方法
CiteScore
7.10
自引率
4.70%
发文量
820
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
期刊最新文献
Real-time forecasting of COVID-19-related hospital strain in France using a non-Markovian mechanistic model. Ten simple rules for teaching an introduction to R Evolutionary analyses of intrinsically disordered regions reveal widespread signals of conservation. A weak coupling mechanism for the early steps of the recovery stroke of myosin VI: A free energy simulation and string method analysis. Validity conditions of approximations for a target-mediated drug disposition model: A novel first-order approximation and its comparison to other approximations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1