大流行时期有能力紧急车辆路径问题的多目标问题建模。

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computing & Applications Pub Date : 2023-01-01 DOI:10.1007/s00521-022-07921-y
Mehmet Altinoz, O Tolga Altinoz
{"title":"大流行时期有能力紧急车辆路径问题的多目标问题建模。","authors":"Mehmet Altinoz,&nbsp;O Tolga Altinoz","doi":"10.1007/s00521-022-07921-y","DOIUrl":null,"url":null,"abstract":"<p><p>This research is based on the capacitated vehicle routing problem with urgency where each vertex corresponds to a medical facility with a urgency level and the traveling vehicle could be contaminated. This contamination is defined as the infectiousness rate, which is defined for each vertex and each vehicle. At each visited vertex, this rate for the vehicle will be increased. Therefore time-total distance it is desired to react to vertex as fast as possible- and infectiousness rate are main issues in the problem. This problem is solved with multiobjective optimization algorithms in this research. As a multiobjective problem, two objectives are defined for this model: the time and the infectiousness, and will be solved using multiobjective optimization algorithms which are nondominated sorting genetic algorithm (NSGAII), grid-based evolutionary algorithm GrEA, hypervolume estimation algorithm HypE, strength Pareto evolutionary algorithm shift-based density estimation SPEA2-SDE, and reference points-based evolutionary algorithm.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568933/pdf/","citationCount":"1","resultStr":"{\"title\":\"Multiobjective problem modeling of the capacitated vehicle routing problem with urgency in a pandemic period.\",\"authors\":\"Mehmet Altinoz,&nbsp;O Tolga Altinoz\",\"doi\":\"10.1007/s00521-022-07921-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research is based on the capacitated vehicle routing problem with urgency where each vertex corresponds to a medical facility with a urgency level and the traveling vehicle could be contaminated. This contamination is defined as the infectiousness rate, which is defined for each vertex and each vehicle. At each visited vertex, this rate for the vehicle will be increased. Therefore time-total distance it is desired to react to vertex as fast as possible- and infectiousness rate are main issues in the problem. This problem is solved with multiobjective optimization algorithms in this research. As a multiobjective problem, two objectives are defined for this model: the time and the infectiousness, and will be solved using multiobjective optimization algorithms which are nondominated sorting genetic algorithm (NSGAII), grid-based evolutionary algorithm GrEA, hypervolume estimation algorithm HypE, strength Pareto evolutionary algorithm shift-based density estimation SPEA2-SDE, and reference points-based evolutionary algorithm.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568933/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-022-07921-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-07921-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

本研究基于紧急情况下的有能力车辆路径问题,其中每个顶点对应一个具有紧急级别的医疗设施,并且行进的车辆可能受到污染。这种污染被定义为传染率,它被定义为每个顶点和每个车辆。在每个访问的顶点,车辆的这个速率将增加。因此,对顶点作出反应的时间-总距离和传染率是问题的主要问题。本研究采用多目标优化算法解决这一问题。作为一个多目标问题,该模型定义了时间和传染性两个目标,并将使用非支配排序遗传算法(NSGAII)、基于网格的进化算法GrEA、超大体积估计算法HypE、强度Pareto进化算法、基于位移的密度估计SPEA2-SDE和基于参考点的进化算法进行求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiobjective problem modeling of the capacitated vehicle routing problem with urgency in a pandemic period.

This research is based on the capacitated vehicle routing problem with urgency where each vertex corresponds to a medical facility with a urgency level and the traveling vehicle could be contaminated. This contamination is defined as the infectiousness rate, which is defined for each vertex and each vehicle. At each visited vertex, this rate for the vehicle will be increased. Therefore time-total distance it is desired to react to vertex as fast as possible- and infectiousness rate are main issues in the problem. This problem is solved with multiobjective optimization algorithms in this research. As a multiobjective problem, two objectives are defined for this model: the time and the infectiousness, and will be solved using multiobjective optimization algorithms which are nondominated sorting genetic algorithm (NSGAII), grid-based evolutionary algorithm GrEA, hypervolume estimation algorithm HypE, strength Pareto evolutionary algorithm shift-based density estimation SPEA2-SDE, and reference points-based evolutionary algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
期刊最新文献
Stress monitoring using wearable sensors: IoT techniques in medical field. A new hybrid model of convolutional neural networks and hidden Markov chains for image classification. Analysing sentiment change detection of Covid-19 tweets. Normal vibration distribution search-based differential evolution algorithm for multimodal biomedical image registration. Special issue on deep learning and big data analytics for medical e-diagnosis/AI-based e-diagnosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1