Sifan Peng, Baoqun Yin, Qianqian Yang, Qing He, Luyang Wang
{"title":"探索人群计数的密度校正和域自适应方法。","authors":"Sifan Peng, Baoqun Yin, Qianqian Yang, Qing He, Luyang Wang","doi":"10.1007/s00521-022-07917-8","DOIUrl":null,"url":null,"abstract":"<p><p>Crowd counting has received increasing attention due to its important roles in multiple fields, such as social security, commercial applications, epidemic prevention and control. To this end, we explore two critical issues that seriously affect the performance of crowd counting including nonuniform crowd density distribution and cross-domain problems. Aiming at the nonuniform crowd density distribution issue, we propose a density rectifying network (DRNet) that consists of several dual-layer pyramid fusion modules (DPFM) and a density rectification map (DRmap) auxiliary learning module. The proposed DPFM is embedded into DRNet to integrate multi-scale crowd density features through dual-layer pyramid fusion. The devised DRmap auxiliary learning module further rectifies the incorrect crowd density estimation by adaptively weighting the initial crowd density maps. With respect to the cross-domain issue, we develop a domain adaptation method of randomly cutting mixed dual-domain images, which learns domain-invariance features and decreases the domain gap between the source domain and the target domain from global and local perspectives. Experimental results indicate that the devised DRNet achieves the best mean absolute error (MAE) and competitive mean squared error (MSE) compared with other excellent methods on four benchmark datasets. Additionally, a series of cross-domain experiments are conducted to demonstrate the effectiveness of the proposed domain adaption method. Significantly, when the A and B parts of the Shanghaitech dataset are the source domain and target domain respectively, the proposed domain adaption method decreases the MAE of DRNet by <math><mrow><mn>47.6</mn> <mo>%</mo></mrow> </math> .</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 4","pages":"3551-3569"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568950/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring density rectification and domain adaption method for crowd counting.\",\"authors\":\"Sifan Peng, Baoqun Yin, Qianqian Yang, Qing He, Luyang Wang\",\"doi\":\"10.1007/s00521-022-07917-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crowd counting has received increasing attention due to its important roles in multiple fields, such as social security, commercial applications, epidemic prevention and control. To this end, we explore two critical issues that seriously affect the performance of crowd counting including nonuniform crowd density distribution and cross-domain problems. Aiming at the nonuniform crowd density distribution issue, we propose a density rectifying network (DRNet) that consists of several dual-layer pyramid fusion modules (DPFM) and a density rectification map (DRmap) auxiliary learning module. The proposed DPFM is embedded into DRNet to integrate multi-scale crowd density features through dual-layer pyramid fusion. The devised DRmap auxiliary learning module further rectifies the incorrect crowd density estimation by adaptively weighting the initial crowd density maps. With respect to the cross-domain issue, we develop a domain adaptation method of randomly cutting mixed dual-domain images, which learns domain-invariance features and decreases the domain gap between the source domain and the target domain from global and local perspectives. Experimental results indicate that the devised DRNet achieves the best mean absolute error (MAE) and competitive mean squared error (MSE) compared with other excellent methods on four benchmark datasets. Additionally, a series of cross-domain experiments are conducted to demonstrate the effectiveness of the proposed domain adaption method. Significantly, when the A and B parts of the Shanghaitech dataset are the source domain and target domain respectively, the proposed domain adaption method decreases the MAE of DRNet by <math><mrow><mn>47.6</mn> <mo>%</mo></mrow> </math> .</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":\"35 4\",\"pages\":\"3551-3569\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568950/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-022-07917-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-07917-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Exploring density rectification and domain adaption method for crowd counting.
Crowd counting has received increasing attention due to its important roles in multiple fields, such as social security, commercial applications, epidemic prevention and control. To this end, we explore two critical issues that seriously affect the performance of crowd counting including nonuniform crowd density distribution and cross-domain problems. Aiming at the nonuniform crowd density distribution issue, we propose a density rectifying network (DRNet) that consists of several dual-layer pyramid fusion modules (DPFM) and a density rectification map (DRmap) auxiliary learning module. The proposed DPFM is embedded into DRNet to integrate multi-scale crowd density features through dual-layer pyramid fusion. The devised DRmap auxiliary learning module further rectifies the incorrect crowd density estimation by adaptively weighting the initial crowd density maps. With respect to the cross-domain issue, we develop a domain adaptation method of randomly cutting mixed dual-domain images, which learns domain-invariance features and decreases the domain gap between the source domain and the target domain from global and local perspectives. Experimental results indicate that the devised DRNet achieves the best mean absolute error (MAE) and competitive mean squared error (MSE) compared with other excellent methods on four benchmark datasets. Additionally, a series of cross-domain experiments are conducted to demonstrate the effectiveness of the proposed domain adaption method. Significantly, when the A and B parts of the Shanghaitech dataset are the source domain and target domain respectively, the proposed domain adaption method decreases the MAE of DRNet by .
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.