Yolanda M Gómez, Diego I Gallardo, Marcelo Bourguignon, Eduardo Bertolli, Vinicius F Calsavara
{"title":"一类具有新的生物学解释的促进时间治愈率模型。","authors":"Yolanda M Gómez, Diego I Gallardo, Marcelo Bourguignon, Eduardo Bertolli, Vinicius F Calsavara","doi":"10.1007/s10985-022-09575-3","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last decades, the challenges in survival models have been changing considerably and full probabilistic modeling is crucial in many medical applications. Motivated from a new biological interpretation of cancer metastasis, we introduce a general method for obtaining more flexible cure rate models. The proposal model extended the promotion time cure rate model. Furthermore, it includes several well-known models as special cases and defines many new special models. We derive several properties of the hazard function for the proposed model and establish mathematical relationships with the promotion time cure rate model. We consider a frequentist approach to perform inferences, and the maximum likelihood method is employed to estimate the model parameters. Simulation studies are conducted to evaluate its performance with a discussion of the obtained results. A real dataset from population-based study of incident cases of melanoma diagnosed in the state of São Paulo, Brazil, is discussed in detail.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A general class of promotion time cure rate models with a new biological interpretation.\",\"authors\":\"Yolanda M Gómez, Diego I Gallardo, Marcelo Bourguignon, Eduardo Bertolli, Vinicius F Calsavara\",\"doi\":\"10.1007/s10985-022-09575-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the last decades, the challenges in survival models have been changing considerably and full probabilistic modeling is crucial in many medical applications. Motivated from a new biological interpretation of cancer metastasis, we introduce a general method for obtaining more flexible cure rate models. The proposal model extended the promotion time cure rate model. Furthermore, it includes several well-known models as special cases and defines many new special models. We derive several properties of the hazard function for the proposed model and establish mathematical relationships with the promotion time cure rate model. We consider a frequentist approach to perform inferences, and the maximum likelihood method is employed to estimate the model parameters. Simulation studies are conducted to evaluate its performance with a discussion of the obtained results. A real dataset from population-based study of incident cases of melanoma diagnosed in the state of São Paulo, Brazil, is discussed in detail.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-022-09575-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09575-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A general class of promotion time cure rate models with a new biological interpretation.
Over the last decades, the challenges in survival models have been changing considerably and full probabilistic modeling is crucial in many medical applications. Motivated from a new biological interpretation of cancer metastasis, we introduce a general method for obtaining more flexible cure rate models. The proposal model extended the promotion time cure rate model. Furthermore, it includes several well-known models as special cases and defines many new special models. We derive several properties of the hazard function for the proposed model and establish mathematical relationships with the promotion time cure rate model. We consider a frequentist approach to perform inferences, and the maximum likelihood method is employed to estimate the model parameters. Simulation studies are conducted to evaluate its performance with a discussion of the obtained results. A real dataset from population-based study of incident cases of melanoma diagnosed in the state of São Paulo, Brazil, is discussed in detail.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.