一种利用Tesseract OCR检测批号的新型库存计数系统。

Parkpoom Lertsawatwicha, Phumidon Phathong, Napatsorn Tantasanee, Kotchakorn Sarawutthinun, Thitirat Siriborvornratanakul
{"title":"一种利用Tesseract OCR检测批号的新型库存计数系统。","authors":"Parkpoom Lertsawatwicha,&nbsp;Phumidon Phathong,&nbsp;Napatsorn Tantasanee,&nbsp;Kotchakorn Sarawutthinun,&nbsp;Thitirat Siriborvornratanakul","doi":"10.1007/s41870-022-01107-4","DOIUrl":null,"url":null,"abstract":"<p><p>Counting stock is one of the warehouse's methods for preventing insatiable stock. Moreover, it could help the company forecast how many products they need to store and predict the replenished goods for customers. However, stock count in the medical business, which sells specialized medical equipment, needs more focus on, because it uses to treat the patient. So that lack of inventory should not happen. In a normal situation, stock count at some hospitals is quite hard for salespeople, especially hospitals in upcountry that far away. During the COVID-19 situation, many limits need to be strict. At this point, it causes a shortage of goods in many hospitals. In this paper, we represent how computer vision can help this process. When the hospital's officer sends images of stock to our system. The system will recognize the quantity and lot number of goods that remain in the hospital. Therefore, salespeople can decrease the times to visit hospitals. The result showed that for text detection and text recognition in a specific use case. Our prototype system achieves 84.17% in accuracy.</p>","PeriodicalId":73455,"journal":{"name":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","volume":"15 1","pages":"393-398"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9540281/pdf/","citationCount":"4","resultStr":"{\"title\":\"A novel stock counting system for detecting lot numbers using Tesseract OCR.\",\"authors\":\"Parkpoom Lertsawatwicha,&nbsp;Phumidon Phathong,&nbsp;Napatsorn Tantasanee,&nbsp;Kotchakorn Sarawutthinun,&nbsp;Thitirat Siriborvornratanakul\",\"doi\":\"10.1007/s41870-022-01107-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Counting stock is one of the warehouse's methods for preventing insatiable stock. Moreover, it could help the company forecast how many products they need to store and predict the replenished goods for customers. However, stock count in the medical business, which sells specialized medical equipment, needs more focus on, because it uses to treat the patient. So that lack of inventory should not happen. In a normal situation, stock count at some hospitals is quite hard for salespeople, especially hospitals in upcountry that far away. During the COVID-19 situation, many limits need to be strict. At this point, it causes a shortage of goods in many hospitals. In this paper, we represent how computer vision can help this process. When the hospital's officer sends images of stock to our system. The system will recognize the quantity and lot number of goods that remain in the hospital. Therefore, salespeople can decrease the times to visit hospitals. The result showed that for text detection and text recognition in a specific use case. Our prototype system achieves 84.17% in accuracy.</p>\",\"PeriodicalId\":73455,\"journal\":{\"name\":\"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management\",\"volume\":\"15 1\",\"pages\":\"393-398\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9540281/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-022-01107-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-022-01107-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

盘点库存是仓库防止库存贪得无厌的方法之一。此外,它可以帮助公司预测他们需要储存多少产品,并预测为客户补充的货物。然而,销售专业医疗设备的医疗业务的库存数量需要更多的关注,因为它用于治疗患者。所以库存不足不应该发生。在正常情况下,一些医院的库存清点对销售人员来说是相当困难的,尤其是在内陆那么远的医院。在COVID-19形势下,有许多限制需要严格。在这一点上,它造成了许多医院物资短缺。在本文中,我们展示了计算机视觉如何帮助这一过程。当医院的工作人员将库存图片发送到我们的系统时。系统将识别留在医院的货物数量和批号。因此,销售人员可以减少去医院的次数。结果表明,对于文本检测和文本识别具有特定的用例。我们的原型系统达到了84.17%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel stock counting system for detecting lot numbers using Tesseract OCR.

Counting stock is one of the warehouse's methods for preventing insatiable stock. Moreover, it could help the company forecast how many products they need to store and predict the replenished goods for customers. However, stock count in the medical business, which sells specialized medical equipment, needs more focus on, because it uses to treat the patient. So that lack of inventory should not happen. In a normal situation, stock count at some hospitals is quite hard for salespeople, especially hospitals in upcountry that far away. During the COVID-19 situation, many limits need to be strict. At this point, it causes a shortage of goods in many hospitals. In this paper, we represent how computer vision can help this process. When the hospital's officer sends images of stock to our system. The system will recognize the quantity and lot number of goods that remain in the hospital. Therefore, salespeople can decrease the times to visit hospitals. The result showed that for text detection and text recognition in a specific use case. Our prototype system achieves 84.17% in accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convolutional neural network based children recognition system using contactless fingerprints. On utilizing modified TOPSIS with R-norm q-rung picture fuzzy information measure green supplier selection. Adoption of machine learning algorithm for predicting the length of stay of patients (construction workers) during COVID pandemic. Adoption and sustainability of bitcoin and the blockchain technology in Nigeria. Debunking multi-lingual social media posts using deep learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1