{"title":"糖尿病性尿崩症的实验室检查:综述。","authors":"Christopher Boot","doi":"10.1177/00045632231154391","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes insipidus (DI) is a group of disorders that lead to inappropriate production of large volumes of dilute urine. The three main forms are central DI (CDI), nephrogenic DI (NDI) and primary polydipsia (PP). Differentiating CDI/NDI from PP is important as patients with true DI are at risk of severe dehydration without treatment. Biochemical testing is key in the diagnosis of DI. The indirect water deprivation test (WDT) is commonly used in the investigation of DI but has drawbacks including being cumbersome and sometimes producing equivocal results. Direct measurement of AVP has theoretical advantages but has generally only been used in specialist centres. Disadvantages include the requirement to measure AVP under hypertonic stimulation and pre-analytical/analytical challenges. Copeptin (CT-proAVP) is a proxy marker for AVP that is more stable, easier to measure and has been studied more widely in recent years. Historically, the evidence supporting the diagnostic performance of these tests has been relatively poor, being based on a few small, usually single-centre studies. However more recent, well-designed prospective studies are improving the evidence base for investigation of DI. These studies have focused on the utility of copeptin measurements during stimulation tests. There is evidence that measurement of copeptin under stimulation offers improved diagnostic performance compared to the WDT. There is currently a lack of systematic, evidence-based guidelines on the diagnosis of DI, but as the quality of the evidence defining the diagnostic performance of tests for DI continues to improve, a clearer consensus on the optimal approach should become achievable.</p>","PeriodicalId":8005,"journal":{"name":"Annals of Clinical Biochemistry","volume":" ","pages":"19-31"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The laboratory investigation of diabetes insipidus: A review.\",\"authors\":\"Christopher Boot\",\"doi\":\"10.1177/00045632231154391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes insipidus (DI) is a group of disorders that lead to inappropriate production of large volumes of dilute urine. The three main forms are central DI (CDI), nephrogenic DI (NDI) and primary polydipsia (PP). Differentiating CDI/NDI from PP is important as patients with true DI are at risk of severe dehydration without treatment. Biochemical testing is key in the diagnosis of DI. The indirect water deprivation test (WDT) is commonly used in the investigation of DI but has drawbacks including being cumbersome and sometimes producing equivocal results. Direct measurement of AVP has theoretical advantages but has generally only been used in specialist centres. Disadvantages include the requirement to measure AVP under hypertonic stimulation and pre-analytical/analytical challenges. Copeptin (CT-proAVP) is a proxy marker for AVP that is more stable, easier to measure and has been studied more widely in recent years. Historically, the evidence supporting the diagnostic performance of these tests has been relatively poor, being based on a few small, usually single-centre studies. However more recent, well-designed prospective studies are improving the evidence base for investigation of DI. These studies have focused on the utility of copeptin measurements during stimulation tests. There is evidence that measurement of copeptin under stimulation offers improved diagnostic performance compared to the WDT. There is currently a lack of systematic, evidence-based guidelines on the diagnosis of DI, but as the quality of the evidence defining the diagnostic performance of tests for DI continues to improve, a clearer consensus on the optimal approach should become achievable.</p>\",\"PeriodicalId\":8005,\"journal\":{\"name\":\"Annals of Clinical Biochemistry\",\"volume\":\" \",\"pages\":\"19-31\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Clinical Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/00045632231154391\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Clinical Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00045632231154391","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
糖尿病性尿崩症(DI)是一组导致不适当地产生大量稀释尿液的疾病。主要有三种形式:中枢性尿崩症(CDI)、肾源性尿崩症(NDI)和原发性多尿症(PP)。将 CDI/NDI 与 PP 区分开来非常重要,因为真正的 DI 患者如果不接受治疗,就会面临严重脱水的风险。生化检测是诊断 DI 的关键。间接缺水试验(WDT)常用于 DI 的检查,但其缺点是操作繁琐,有时结果不明确。直接测量 AVP 具有理论上的优势,但通常只在专科中心使用。其缺点包括需要在高渗刺激下测量 AVP 以及分析前/分析中的难题。谷丙肽(CT-proAVP)是 AVP 的替代标记物,它更稳定、更容易测量,近年来得到了更广泛的研究。从历史上看,支持这些检测诊断性能的证据相对较少,主要基于一些小型的、通常是单中心的研究。然而,最近更多精心设计的前瞻性研究正在改善 DI 调查的证据基础。这些研究的重点是在刺激试验中测量 copeptin 的效用。有证据表明,与 WDT 相比,在刺激下测量 copeptin 可提高诊断性能。目前还缺乏系统的、以证据为基础的 DI 诊断指南,但随着定义 DI 检测诊断性能的证据质量不断提高,应该可以就最佳方法达成更明确的共识。
The laboratory investigation of diabetes insipidus: A review.
Diabetes insipidus (DI) is a group of disorders that lead to inappropriate production of large volumes of dilute urine. The three main forms are central DI (CDI), nephrogenic DI (NDI) and primary polydipsia (PP). Differentiating CDI/NDI from PP is important as patients with true DI are at risk of severe dehydration without treatment. Biochemical testing is key in the diagnosis of DI. The indirect water deprivation test (WDT) is commonly used in the investigation of DI but has drawbacks including being cumbersome and sometimes producing equivocal results. Direct measurement of AVP has theoretical advantages but has generally only been used in specialist centres. Disadvantages include the requirement to measure AVP under hypertonic stimulation and pre-analytical/analytical challenges. Copeptin (CT-proAVP) is a proxy marker for AVP that is more stable, easier to measure and has been studied more widely in recent years. Historically, the evidence supporting the diagnostic performance of these tests has been relatively poor, being based on a few small, usually single-centre studies. However more recent, well-designed prospective studies are improving the evidence base for investigation of DI. These studies have focused on the utility of copeptin measurements during stimulation tests. There is evidence that measurement of copeptin under stimulation offers improved diagnostic performance compared to the WDT. There is currently a lack of systematic, evidence-based guidelines on the diagnosis of DI, but as the quality of the evidence defining the diagnostic performance of tests for DI continues to improve, a clearer consensus on the optimal approach should become achievable.
期刊介绍:
Annals of Clinical Biochemistry is the fully peer reviewed international journal of the Association for Clinical Biochemistry and Laboratory Medicine.
Annals of Clinical Biochemistry accepts papers that contribute to knowledge in all fields of laboratory medicine, especially those pertaining to the understanding, diagnosis and treatment of human disease. It publishes papers on clinical biochemistry, clinical audit, metabolic medicine, immunology, genetics, biotechnology, haematology, microbiology, computing and management where they have both biochemical and clinical relevance. Papers describing evaluation or implementation of commercial reagent kits or the performance of new analysers require substantial original information. Unless of exceptional interest and novelty, studies dealing with the redox status in various diseases are not generally considered within the journal''s scope. Studies documenting the association of single nucleotide polymorphisms (SNPs) with particular phenotypes will not normally be considered, given the greater strength of genome wide association studies (GWAS). Research undertaken in non-human animals will not be considered for publication in the Annals.
Annals of Clinical Biochemistry is also the official journal of NVKC (de Nederlandse Vereniging voor Klinische Chemie) and JSCC (Japan Society of Clinical Chemistry).