纤维化学和技术:它们对社会5.0的贡献。

IF 4.703 3区 材料科学 Nanoscale Research Letters Pub Date : 2023-09-16 DOI:10.1186/s11671-023-03888-4
Mariam Al Ali Al Maadeed, Deepalekshmi Ponnamma
{"title":"纤维化学和技术:它们对社会5.0的贡献。","authors":"Mariam Al Ali Al Maadeed,&nbsp;Deepalekshmi Ponnamma","doi":"10.1186/s11671-023-03888-4","DOIUrl":null,"url":null,"abstract":"<div><p>Society 5.0 establishes innovations and innovativeness as the basic platforms for accelerating the development of solution-based strategies for the sustainability problems every society is facing. It features an interactive cycle operating at a society-wide level through which data are collected, analyzed and transformed into applicable technology for the real world. Transforming the current society into a super smart society requires in-depth knowledge of the Internet of Things, robotics and artificial intelligence. Being a member of the 4th industrial revolution is significant; however, it is equally important to alleviate the socioeconomic challenges associated with it and to maintain sustainability. From cellulose to carbon, fibers have utmost importance in technological applications, industrial developments and sustainability. Fibers are identified as useful energy resources, water treatment mediums, supercapacitors in electronic devices and wearable e-textiles. Therefore, knowing the chemistry behind fiber manipulation for advanced applications for Society 5.0 is beneficial. In this paper, we highlight the contributions of fibers to shaping Society 5.0 and their modifications and role in providing a sustainable environment. We highlight the chemical aspects behind tailoring fibers to provide state-of-the-art information on fiber-based products. We also provide background information on fiber technology and the sustainable development goals for a fiber-oriented Society 5.0. Scientists, researchers and specialists in this field should understand the impact of tailoring and influencing society as a whole.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505127/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fiber chemistry and technology: their contributions to shaping Society 5.0\",\"authors\":\"Mariam Al Ali Al Maadeed,&nbsp;Deepalekshmi Ponnamma\",\"doi\":\"10.1186/s11671-023-03888-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Society 5.0 establishes innovations and innovativeness as the basic platforms for accelerating the development of solution-based strategies for the sustainability problems every society is facing. It features an interactive cycle operating at a society-wide level through which data are collected, analyzed and transformed into applicable technology for the real world. Transforming the current society into a super smart society requires in-depth knowledge of the Internet of Things, robotics and artificial intelligence. Being a member of the 4th industrial revolution is significant; however, it is equally important to alleviate the socioeconomic challenges associated with it and to maintain sustainability. From cellulose to carbon, fibers have utmost importance in technological applications, industrial developments and sustainability. Fibers are identified as useful energy resources, water treatment mediums, supercapacitors in electronic devices and wearable e-textiles. Therefore, knowing the chemistry behind fiber manipulation for advanced applications for Society 5.0 is beneficial. In this paper, we highlight the contributions of fibers to shaping Society 5.0 and their modifications and role in providing a sustainable environment. We highlight the chemical aspects behind tailoring fibers to provide state-of-the-art information on fiber-based products. We also provide background information on fiber technology and the sustainable development goals for a fiber-oriented Society 5.0. Scientists, researchers and specialists in this field should understand the impact of tailoring and influencing society as a whole.</p></div>\",\"PeriodicalId\":715,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7030,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505127/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-023-03888-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-023-03888-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社会5.0建立了创新和创新作为基本平台,以加速发展基于解决方案的战略,以解决每个社会所面临的可持续性问题。它的特点是在全社会层面上进行互动循环,通过这种循环收集、分析数据并将其转化为适用于现实世界的技术。将当前社会转变为超级智能社会需要对物联网、机器人和人工智能有深入的了解。作为第四次工业革命的一员意义重大;然而,同样重要的是减轻与之相关的社会经济挑战并保持可持续性。从纤维素到碳,纤维在技术应用、工业发展和可持续性方面具有极其重要的意义。纤维被认为是有用的能源、水处理介质、电子设备中的超级电容器和可穿戴电子纺织品。因此,了解社会5.0高级应用中纤维操作背后的化学原理是有益的。在本文中,我们强调了纤维对塑造社会5.0的贡献,以及它们在提供可持续环境方面的改变和作用。我们强调裁剪纤维背后的化学方面,以提供纤维基产品的最新信息。我们还提供了光纤技术的背景信息和面向光纤的社会5.0的可持续发展目标。这一领域的科学家、研究人员和专家应了解调整和影响整个社会的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fiber chemistry and technology: their contributions to shaping Society 5.0

Society 5.0 establishes innovations and innovativeness as the basic platforms for accelerating the development of solution-based strategies for the sustainability problems every society is facing. It features an interactive cycle operating at a society-wide level through which data are collected, analyzed and transformed into applicable technology for the real world. Transforming the current society into a super smart society requires in-depth knowledge of the Internet of Things, robotics and artificial intelligence. Being a member of the 4th industrial revolution is significant; however, it is equally important to alleviate the socioeconomic challenges associated with it and to maintain sustainability. From cellulose to carbon, fibers have utmost importance in technological applications, industrial developments and sustainability. Fibers are identified as useful energy resources, water treatment mediums, supercapacitors in electronic devices and wearable e-textiles. Therefore, knowing the chemistry behind fiber manipulation for advanced applications for Society 5.0 is beneficial. In this paper, we highlight the contributions of fibers to shaping Society 5.0 and their modifications and role in providing a sustainable environment. We highlight the chemical aspects behind tailoring fibers to provide state-of-the-art information on fiber-based products. We also provide background information on fiber technology and the sustainable development goals for a fiber-oriented Society 5.0. Scientists, researchers and specialists in this field should understand the impact of tailoring and influencing society as a whole.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
15.00
自引率
0.00%
发文量
110
审稿时长
2.5 months
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
期刊最新文献
Novel loading protocol combines highly efficient encapsulation of exogenous therapeutic toxin with preservation of extracellular vesicles properties, uptake and cargo activity Viscoelastic modelling and analysis of two-dimensional woven CNT-based multiscale fibre reinforced composite material system InGaN blue resonant cavity micro-LED with RGY quantum dot layer for broad gamut, efficient displays Transport properties of mechanochemically synthesized copper (I) selenide for potential applications in energy conversion and storage Photodynamic impact of curcumin enhanced silver functionalized graphene nanocomposites on Candida virulence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1